1.已知兩個力$\overrightarrow{{F}_{1}}$,$\overrightarrow{{F}_{2}}$的夾角為90°,它們的合力大小為10N,合力與$\overrightarrow{{F}_{1}}$的夾角為60°,那么$\overrightarrow{{F}_{1}}$的大小為( 。
A.5$\sqrt{3}$NB.5NC.10ND.5$\sqrt{2}$N

分析 由條件利用兩個向量的加減法及其幾何意義,求得|$\overrightarrow{{F}_{1}}$|的值.

解答 解:兩個力$\overrightarrow{{F}_{1}}$,$\overrightarrow{{F}_{2}}$的夾角為90°,它們的合力大小為10N,
合力與$\overrightarrow{{F}_{1}}$的夾角為60°,
那么$\overrightarrow{{F}_{1}}$的大小為|$\overrightarrow{{F}_{1}}$|=10•cos60°=5(N ),如圖所示:
故選:B.

點評 本題主要考查兩個向量的加減法及其幾何意義,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.若橢圓$\frac{x^2}{4}+{y^2}$=1上一點到左焦點的距離為1,則該點到右焦點的距離為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,四棱錐P-ABCD的底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求直線AB與平面PBC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.兩直線x-2y+7=0和2x+y-1=0的交點坐標為( 。
A.(1,3)B.(-1,3)C.(3,-1)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{{x^2}+ax+b}}{x}$(x≠0)是奇函數(shù),且滿足f(1)=f(4).
(1)求實數(shù)a,b的值;
(2)若x∈[2,+∞),函數(shù)f(x)的圖象上是否存在不同的兩點,使過這兩點的直線平行于軸,請說明理由!
(3)是否存在實數(shù)同時滿足以下兩個條件:①不等式f(x)+$\frac{k}{2}$>0對x∈(0,+∞)恒成立,②方程f(x)=k在x∈[-8,-1]上有解.若存在,求出實數(shù)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知a,b,x,y均為正數(shù),a≠b,求證:$\frac{a^2}{x}$+$\frac{b^2}{y}$≥$\frac{{{{({a+b})}^2}}}{x+y}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知數(shù)列{an}滿足a1=4,an+2an+1=6,則a4=$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知p:|m-$\frac{x-1}{3}}$|≤2;q:|x-2|+|x-3|>3.若¬p是¬q的必要不充分條件.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,AB=$\sqrt{3}$,AC=1,∠B=30°,
(1)求角C
(2)求△ABC的面積.

查看答案和解析>>

同步練習冊答案