已知角θ的頂點(diǎn)坐標(biāo)原點(diǎn),始邊與x軸正半軸重合,終邊在直線3x-y=0上,則
sin(
2
+θ)+2cos(π-θ)
sin(
π
2
-θ)-sin(π-θ)
=(  )
A、-
3
2
3
2
B、0或
2
3
C、
3
2
D、
2
3
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:利用已知條件求出θ的正切函數(shù)值,通過誘導(dǎo)公式化簡(jiǎn)所求表達(dá)式即可求出結(jié)果.
解答: 解:角θ的頂點(diǎn)坐標(biāo)原點(diǎn),始邊與x軸正半軸重合,終邊在直線3x-y=0上,
可得tanθ=3.
sin(
2
+θ)+2cos(π-θ)
sin(
π
2
-θ)-sin(π-θ)
=
-cosθ-2cosθ
cosθ-sinθ
=
-3
1-tanθ
=
-3
1-3
=
3
2

故選:C.
點(diǎn)評(píng):本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)的定義,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:“x>2且是x2>4的充要條件”,命題q:“?x∈R,2x>0”.則下列結(jié)論正確的是(  )
A、p∨q為假
B、p∧q為真
C、p∨(¬q)為假
D、p,q均為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(x-2)(ax+b)為偶函數(shù),且在(0,+∞)單調(diào)遞增,則f(x)>0的解集為( 。
A、{x|x<0或x>4}
B、{x|-2<x<2}
C、{x|x>2或x<-2}
D、{x|0<x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
1
1-tanθ
-
1
1+tanθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

冪函數(shù)f(x)=xα的圖象經(jīng)過點(diǎn)(2,4),則f(9)=( 。
A、1B、3C、9D、81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-2x<0},B={x|1<x<3},那么A∩B=( 。
A、{x|0<x<2}
B、{x|1<x<2}
C、{x|0<x<3}
D、{x|1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=1+2i(i為虛數(shù)單位),則z2-
5
z
等于( 。
A、4+6i
B、-4+6i
C、
20
3
+
2
3
i
D、-4+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x3+ax+4則“a>0”是“f(x)在R上單調(diào)遞增”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分,也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)的一部分圖象如圖所示,(其中A>0,ω>0,|φ|<
π
2
).
(Ⅰ)求函數(shù)f(x)的解析式并求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,若f(A)=1,sinB=4sin(π-C),△ABC的面積為
3
,求邊長(zhǎng)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案