分析 分別求出命題p,q成立的等價條件,然后根據(jù)若p或q為真命題,p且q為假命題,求出實數(shù)m的取值范圍.
解答 解:∵不等式|x|+|x-1|≥1,
∴要使不等式|x|+|x-1|>m的解集為R,則m<1.
即p:m<1.
函數(shù)f(x)=(5-2m)x是增函數(shù),
則5-2m>1,即2m<4,m<2,
即q:m<2.
若p或q為真命題,p且q為假命題,
則p,q一真一假.
若p真,q假,則$\left\{\begin{array}{l}{m<1}\\{m≥2}\end{array}\right.$,此時無解.
若p假,q真,則$\left\{\begin{array}{l}{m≥1}\\{m<2}\end{array}\right.$,
解得1≤m<2.
點評 本題主要考查復合命題與簡單命題之間的關系的應用,利用條件先求出命題p,q的等價條件是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | 9.5 | 13.5 | 17.5 | 21.5 | 25.5 |
y | 6 | 4 | 2.8 | 2.4 | 2.2 |
$\overline{x}$ | $\overline{W}$ | $\overline{y}$ | $\sum_{I=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{I=1}^{5}$(xi-$\overline{x}$)2 | $\sum_{I=1}^{5}$(Wi-$\overline{W}$)(yi-$\overline{y}$) | $\sum_{I=1}^{5}$((Wi-$\overline{W}$)2 |
17.5 | 0.06 | 3.5 | -36.8 | 160 | 0.165 | 0.003 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | 24 | C. | 36 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com