【題目】據(jù)市場調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場的30天中,其銷售價(jià)格(元)和時(shí)間(天)的關(guān)系如圖所示.
(1)求銷售價(jià)格(元)和時(shí)間(天)的函數(shù)關(guān)系式;
(2)若日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系式是 ,問該產(chǎn)品投放市場第幾天時(shí),日銷售額(元)最高,且最高為多少元?
【答案】(Ⅰ);(Ⅱ)在第10天時(shí),日銷售額最大,最大值為900元.
【解析】
試題(Ⅰ)通過討論t的范圍,求出函數(shù)的表達(dá)式即可;(Ⅱ)先求出函數(shù)的表達(dá)式,通過討論t的范圍,求出函數(shù)的最大值即可.
解:(Ⅰ)①當(dāng)0≤t<20,t∈N時(shí),
設(shè)P=at+b,將(0,20),(20,40)代入,得解得
所以P=t+20(0≤t<20,t∈N).
②當(dāng)20≤t≤30,t∈N時(shí),
設(shè)P=at+b,將(20,40),(30,30)代入,解得
所以 P=﹣t+60(20≤t≤30,t∈N),)
綜上所述
(Ⅱ)依題意,有y=PQ,
得
化簡得
整理得
①當(dāng)0≤t<20,t∈N時(shí),由y=﹣(t﹣10)2+900可得,當(dāng)t=10時(shí),y有最大值900元.
②當(dāng)20≤t≤30,t∈N時(shí),由y=(t﹣50)2﹣100可得,當(dāng)t=20時(shí),y有最大值800元.
因?yàn)?900>800,所以在第10天時(shí),日銷售額最大,最大值為900元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,其中c為常數(shù),且函數(shù)f(x)的圖象過原點(diǎn).
(1)求c的值,并求證:f()+f(x)=1;
(2)判斷函數(shù)f(x)在(-1,+∞)上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
()若,求函數(shù)的單調(diào)遞減區(qū)間.
()求函數(shù)的極值.
()若函數(shù)在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)為5元,銷售單價(jià)與日均銷售量的關(guān)系如圖所示.
銷售單價(jià)/元 | … | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | … |
日均銷售量/桶 | … | 480 | 460 | 440 | 420 | 400 | 380 | … |
請根據(jù)以上數(shù)據(jù)作出分析,這個(gè)經(jīng)營部怎樣定價(jià)才能獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為3,2,則輸出v的值為( )
A.9
B.18
C.20
D.35
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:,直線過定點(diǎn).
(1)若與圓相切,求的方程;
(2)若與圓相交于兩點(diǎn),線段的中點(diǎn)為,又與的交點(diǎn)為,判斷是否為定值.若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2(cos θ+sin θ).
(1)求C的直角坐標(biāo)方程;
(2)直線l: (t為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于點(diǎn)E,求|EA|+|EB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計(jì)劃在S市的A區(qū)開設(shè)分店.為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個(gè)數(shù),y表示這x個(gè)分店的年收入之和.
x(個(gè)) | 2 | 3 | 4 | 5 | 6 |
y(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)在年收入之和為2.5(百萬元)和3(百萬元)兩區(qū)中抽取兩分店調(diào)查,求這兩分店來自同一區(qū)的概率
(2)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程;
(3)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關(guān)系為z=y-0.05x2-1.4,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個(gè)分店,才能使A區(qū)平均每個(gè)分店的年利潤最大?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和Sn=2n+1,
(1)求{an}的通項(xiàng)公式
(2)設(shè)bn=log2an+2 , 求 的前n項(xiàng)和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com