分析 利用反證法,先對結(jié)論進行否定,再利用基本不等式,推出矛盾即可.
解答 證明:假設(shè)三個式子都大于$\frac{1}{4}$,
即(1-x)y>$\frac{1}{4}$,(1-y)z>$\frac{1}{4}$,(1-z)x>$\frac{1}{4}$,
三個式子相乘得:
(1-x)y•(1-y)z•(1-z)x>$\frac{1}{{4}^{3}}$ ①
∵0<x<1,∴x(1-x)≤($\frac{x+1-x}{2}$)2=$\frac{1}{4}$
同理:y(1-y)≤$\frac{1}{4}$,z(1-z)≤$\frac{1}{4}$,
∴(1-x)y•(1-y)z•(1-z)x≤$\frac{1}{{4}^{3}}$ ②
顯然①與②矛盾,所以假設(shè)是錯誤的,故原命題成立.
點評 本題考查用反證法證明數(shù)學(xué)命題,把要證的結(jié)論進行否定,在此基礎(chǔ)上推出矛盾,是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4i | B. | -4i | C. | 4 | D. | -4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com