【題目】如圖1,在直角梯形ABCD,,,,將 沿折起,使平面平面,得到幾何體,如圖2所示.

1)求證:平面;

2)求二面角D-AB-C的正弦值.

【答案】(1)證明見解析;(2)

【解析】

1)可結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)來進(jìn)行證明,取AC中點(diǎn)O,連接DO,通過線面垂直的性質(zhì)可得,再結(jié)合圖形幾何性質(zhì)即可得證;

2)可在(1)的基礎(chǔ)之上作F為二面角 的平面角,通過幾何關(guān)系求解即可

1)證明:在圖1中,由題意知,,,

,

AC中點(diǎn)O,連接DO,則,又平面平面ABC,

且平面平面平面ACD,

從而平面ABC,

,,

平面ACD

2)過DO,再過OF,

連接DF,易知為二面角 的平面角

易知,

,即為所求二面角的正弦值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)(其中常數(shù))圖象上的兩個(gè)動(dòng)點(diǎn),點(diǎn),若的最小值為0,則函數(shù)的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

(1)的兩個(gè)不同零點(diǎn),是否存在實(shí)數(shù),使成立?若存在,的值;若不存在,請(qǐng)說明理由.

(2)設(shè),函數(shù),存在個(gè)零點(diǎn).

(i)的取值范圍;

(ii)設(shè)分別是這個(gè)零點(diǎn)中的最小值與最大值,的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左右焦點(diǎn)為為它的中心,為雙曲線右支上的一點(diǎn),的內(nèi)切圓圓心為,且圓軸相切于點(diǎn),過作直線的垂線,垂足為,若雙曲線的離心率為,則( )

A.B.C.D.關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱禮讓斑馬線,《中華人民共和國(guó)道路交通安全法》第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.

1)交警從這5個(gè)月內(nèi)通過該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不禮讓斑馬線行為與駕齡的關(guān)系,得到如下列聯(lián)表:能否據(jù)此判斷有97.5%的把握認(rèn)為禮讓斑馬線行為與駕齡有關(guān)?

不禮讓斑馬線

禮讓斑馬線

合計(jì)

駕齡不超過1

22

8

30

駕齡1年以上

8

12

20

合計(jì)

30

20

50

2)下圖是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不禮讓斑馬線行為的折線圖:

請(qǐng)結(jié)合圖形和所給數(shù)據(jù)求違章駕駛員人數(shù)y與月份x之間的回歸直線方程,并預(yù)測(cè)該路口7月份的不禮讓斑馬線違章駕駛員人數(shù).

附注:參考數(shù)據(jù):,

參考公式:,,(其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

(1)當(dāng)時(shí),求不等式的解集;

(2)已知恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;

(Ⅲ)設(shè),對(duì)任意恒有,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,為橢圓上一動(dòng)點(diǎn)(異于左右頂點(diǎn)),面積的最大值為

(1)求橢圓的方程;

(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,過的直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為.

(1)當(dāng)軸垂直時(shí),求直線的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案