2.設(shè)復(fù)數(shù)z=(2-i)2,則z的共軛復(fù)數(shù)為( 。
A.3+4iB.3-4iC.5-4iD.5+4i

分析 利用復(fù)數(shù)代數(shù)形式的乘法運算化簡,再由共軛復(fù)數(shù)的概念得答案.

解答 解:∵z=(2-i)2=4-4i+i2=3-4i,
∴$\overline{z}=3+4i$.
故選:A.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)y=f(x)對任意實數(shù)x都有f(1+x)=f(1-x),且函數(shù)f(x)在[1,+∞)上為單調(diào)函數(shù).若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a6)=f(a23),則{an}的前28項之和S28=(  )
A.7B.14C.28D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=4x,若4,f(a1),f(a2),…,f(an),2n+3(n∈N*)構(gòu)成等比數(shù)列.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè) bn=$\left\{\begin{array}{l}\frac{1}{n},n為偶數(shù)\\ n+2,n為奇數(shù)\end{array}$求數(shù)列{$\frac{b_n}{a_n}}$}的前n項和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知不等式(x-1)m<2x-1對m∈(0,3)恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=|x-1|+a|x-2|,a∈R
(Ⅰ)若函數(shù)f(x)存在最小值,求a的取值范圍;
(Ⅱ)若對任意x∈R,有f(x)≥$\frac{1}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.要得到函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象,可將函數(shù)y=sin2x的圖象向右平移$\frac{π}{6}$個單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a,b,l均為直線,α,β均為平面,則下列命題判斷錯誤的是(  )
A.若l∥α,則α內(nèi)存在無數(shù)條直線與l平行
B.若α⊥β,則α內(nèi)存在無數(shù)條直線與β不垂直
C.若α∥β,則α內(nèi)存在直線m,β內(nèi)存在直線,使得m⊥n
D.若a⊥l,b⊥l,則a與b不可能垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,PA⊥平面ABCD,四邊形ABCD為矩形,PA=AB=1,AD=2,點F是PB的中點,點E在邊BC上移動.
(1)當(dāng)點E為BC的中點時,證明:EF∥平面PAC;
(2)求三棱錐E-PAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.m變化時,兩平行線3x-4y+m-1=0和3x一4y+m2=0之間距離的最小值等于$\frac{3}{20}$.

查看答案和解析>>

同步練習(xí)冊答案