若雙曲線的一條漸近線方程為,則的值為     。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分18分,第(1)小題4分,第(2)小題8分,第(3)小題6分)
已知雙曲線的一個焦點是,且
(1)求雙曲線的方程;
(2)設(shè)經(jīng)過焦點的直線的一個法向量為,當直線與雙曲線的右支相交于不同的兩點時,求實數(shù)的取值范圍;并證明中點在曲線上.
(3)設(shè)(2)中直線與雙曲線的右支相交于兩點,問是否存在實數(shù),使得為銳角?若存在,請求出的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)已知橢圓的兩個焦點分別為F1(-c,0),F(xiàn)2(c,0),(c>0),過點E的直線與橢圓交于A、B兩點,且F1A//F2B,|F1A|=2|F2B|,
(1)求離心率;
2)求直線AB的斜率;
(3)設(shè)點C與點A關(guān)于標標原點對稱,直線F2B上有一點H(m,n)(m≠0)在△AF1C的外接圓上,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知拋物線為正常數(shù))的焦點為,過做一直線交拋物線,兩點,點為坐標原點.
(1)若的面積記為,求的值;
(2)若直線垂直于軸,過點P做關(guān)于直線對稱的兩條直線分別交拋物線C于M,N兩點,證明:直線MN斜率等于拋物線在點Q處的切線斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線與雙曲線有相同的焦點,點是兩曲線的一個交點,軸,若直線是雙曲線的一條漸近線,則直線的傾斜角所在的區(qū)間可能為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為,則                           (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線的兩個頂點三等分焦距,則該雙曲線的漸近線方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

經(jīng)過拋物線的焦點,且傾斜角為的直線方程為             (   )
A.B.
C..mD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出下列四個命題:
①動點M到兩定點AB的距離之比為常數(shù),則動點M的軌跡是圓;
②橢圓的離心率為
③雙曲線的焦點到漸近線的距離是;
④已知拋物線上兩點, 為原點),則.
其中的真命題是_____________.(把你認為是真命題的序號都填上)

查看答案和解析>>

同步練習冊答案