分析 利用已知條件求出a,b,然后求解雙曲線的漸近線方程,然后推出橢圓的長半軸的長,短半軸的長,求出橢圓方程即可.
解答 解:雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的虛軸長為2,焦距為2$\sqrt{3}$,
可得:b=1,c=$\sqrt{3}$,則a=$\sqrt{2}$,漸近線方程為$y=±\frac{{\sqrt{2}}}{2}x$,
以雙曲線焦點和頂點分別為頂點和焦點的橢圓的長半軸為:$\sqrt{3}$,半焦距為:$\sqrt{2}$,短半軸為:1,
橢圓方程為$\frac{x^2}{3}+{y^2}=1$.
點評 本題考查雙曲線的簡單性質(zhì)橢圓的簡單性質(zhì)的應(yīng)用,考查基本知識的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{9}{2}$e${\;}^{-\frac{3}{2}}$) | B. | (-$\frac{e}{2}$,0] | C. | ($\frac{9}{2}$e${\;}^{-\frac{3}{2}}$,+∞) | D. | (-$\frac{e}{2}$,$\frac{9}{2}$e${\;}^{-\frac{3}{2}}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com