5.若$\frac{π}{4}$<α≤β≤$\frac{π}{3}$,則2α-β的取值范圍是($\frac{π}{6}$,$\frac{5π}{12}$).

分析 根據(jù)已知結(jié)合不等式的基本性質(zhì),可得2α-β的范圍.

解答 解:∵$\frac{π}{4}$<α≤β≤$\frac{π}{3}$,
∴$\frac{π}{2}$<2α≤$\frac{2π}{3}$,-$\frac{π}{3}$≤-β<-$\frac{π}{4}$,
∴$\frac{π}{6}$<2α-β<$\frac{5π}{12}$,
即2α-β的取值范圍是($\frac{π}{6}$,$\frac{5π}{12}$),
故答案為:($\frac{π}{6}$,$\frac{5π}{12}$).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是不等式的基本性質(zhì),難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖四棱錐P-ABCD,三角形ABC為正三角形,邊長(zhǎng)為2,AD⊥DC,AD=1,PO垂直于平面ABCD于O,O為AC的中點(diǎn),PO=1.
(1)證明PA⊥BO;
(2)證明DO∥平面PAB;
(3)平面PAB與平面PCD所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.二次函數(shù)f(x)=x2+x,當(dāng)x∈[n,n+1](n∈N*)時(shí),f(x)函數(shù)值中所有整數(shù)值的個(gè)數(shù)為g(n),an=$\frac{{2{n^3}+3{n^2}}}{g(n)}$(n∈N*),求Sn=a1-a2+a3-a4+…+(-1)n-1an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合M={x|2x+1>0},N={x|x+2>x2},則M∩N=( 。
A.{x|$\frac{1}{2}$<x<2}B.{x|$\frac{1}{2}$<x<1}C.{x|-$\frac{1}{2}$<x<1}D.{x|-$\frac{1}{2}$<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(-4,3),$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$垂直,則|$\overrightarrow$|的值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列敘述中,正確的個(gè)數(shù)是( 。
①命題p:“?x0∈R,x${\;}_{0}^{2}$-2≥0”的否定為¬p:“?x∈R,x2-2<0”;
②“M>N”是“($\frac{2}{3}$)M>($\frac{2}{3}$)N”的充分不必要條件;
③命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4≠0”
④若p∨q為假命題,則¬p為真命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個(gè)大風(fēng)車的半徑為8米,按逆時(shí)針方向12分鐘旋轉(zhuǎn)一周,它的最低點(diǎn)離地面高2米,如圖所示,設(shè)風(fēng)車翼片的一個(gè)端點(diǎn)P離地面的距離為h(m),P的初始位置在最低點(diǎn).風(fēng)車轉(zhuǎn)動(dòng)的時(shí)間為t(min),當(dāng)t=8(min)時(shí),h=14(m); h與t的函數(shù)關(guān)系為$h(t)=-8cos\frac{π}{6}t+10$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知關(guān)于x的方程2sinx+cosx=m在[0,2π]內(nèi)有兩個(gè)不同的解α,β.
(1)求實(shí)數(shù)m的取值范圍;
(2)證明:cos(α-β)=$\frac{2{m}^{2}}{5}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某衛(wèi)視的大型娛樂節(jié)目現(xiàn)場(chǎng),所有參演的節(jié)目都由甲、乙、丙三名專業(yè)老師投票決定是否通過進(jìn)入下一輪,甲、乙、丙三名老師都有“通過”“待定”“淘汰”三類票各一張,每個(gè)節(jié)目投票時(shí),甲、乙、丙三名老師必須且只能投一張票,每人投三類票中的任意一類票的概率均為$\frac{1}{3}$,且三人投票相互沒有影響,若投票結(jié)果中至少有兩張“通過”票,則該節(jié)目獲得“通過”,否則該節(jié)目不能獲得“通過”.
(I)求某節(jié)目的投票結(jié)果獲“通過”的概率;
(Ⅱ)記某節(jié)目投票結(jié)果中所含“通過”和“待定”票票數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案