5.如圖,三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,D為PC的中點(diǎn),E為PB的中點(diǎn).
(Ⅰ)求證:BC∥平面ADE;
(Ⅱ)若PA=AB=BC=2,求三棱錐A-BDE的體積.

分析 (I)由中位線定理得出DE∥BC,故而BC∥平面ADE;
(II)證明BC⊥平面PAB,得出DE⊥平面PAB,于是VA-BDE=VD-ABE=$\frac{1}{3}$S△ABE•DE.

解答 證明:(Ⅰ)∵D為PC的中點(diǎn),E為PB的中點(diǎn),
∴DE為△PBC的中位線,∴DE∥BC,
∵DE?平面ADE,BC?平面ADE,
∴BC∥平面ADE.
解:(Ⅱ)∵PA⊥平面ABC,BC?平面ABC,
∴PA⊥BC,又BC⊥AB,PA∩AB=A,
∴BC⊥平面PAB,
由(Ⅰ)可知DE∥BC,
∴DE⊥平面PAB,
∵PA=AB=2,E是PB的中點(diǎn),
∴S△ABE=$\frac{1}{2}$S△PAB=$\frac{1}{2}×2×2×\frac{1}{2}$=1,
又∵DE=$\frac{1}{2}$BC=1.
∴VA-BDE=VD-ABE=$\frac{1}{3}$×1×1=$\frac{1}{3}$.

點(diǎn)評 本題考查了線面平行的判定,棱錐的體積計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.解下列關(guān)于x的不等式.
(1)(x+4)(x+5)2(2-x)3<0;
(2)|4x2-10x-3|<3;
(3)$\frac{{x}^{2}-4x+1}{3{x}^{2}-7x+2}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)f(x)=x3+ax2-9x-1(a<0),若曲線y=f(x)的斜率最小的切線與直線12x+y-6=0平行,則a的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)=-a2x2+2a2x+2(a∈R),若f(x)>0在x∈(-2,2)上恒成立,則a的取值范圍是( 。
A.-$\frac{1}{12}<a≤\frac{1}{2}$B.$a≤-\frac{1}{12}$或$a>\frac{1}{2}$C.-4<a≤2D.$-\frac{1}{2}≤a≤\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.${log_2}\sqrt{2}+{log_{\frac{1}{2}}}2$=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{3}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=(x-1)[x2+(a+2)x+a-b-2]有3個(gè)零點(diǎn)
(1)a,b滿足的關(guān)系式是a2+4b+12>0且2a-b+1≠0,
(2)若3個(gè)零點(diǎn)中其中2個(gè)可以作為橢圓和雙曲線的離心率,則a2+b2的取值范圍是(34,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給出下列命題:
①在正方體上任意選擇4個(gè)不共面的頂點(diǎn),它們可能是正四面體的4個(gè)頂點(diǎn);
②底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
③若有兩個(gè)側(cè)面垂直于底面,則該四棱柱為直四棱柱;
④一個(gè)棱錐可以有兩條側(cè)棱和底面垂直;
⑤一個(gè)棱錐可以有兩個(gè)側(cè)面和底面垂直;
⑥所有側(cè)面都是正方形的四棱柱一定是正方體.
其中正確命題的序號是①⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若$\overrightarrow a,\overrightarrow b$是兩個(gè)非零向量,且$|{\overrightarrow a}|=|{\overrightarrow b}|=\frac{{\sqrt{3}}}{3}|{\overrightarrow a+\overrightarrow b}|$,則$\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.sin50°cos10°+sin140°cos80°=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案