2.△ABC中,三邊a、b、c成等比數(shù)列.求證:acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$≥$\frac{3}{2}$b.

分析 由已知可得b2=ac,把要證的不等式左邊降冪后利用余弦定理化角為邊,然后利用基本不等式證得答案.

解答 證明:∵a、b、c成等比數(shù)列,
∴b2=ac.
∴acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{a(1+cosC)}{2}+\frac{c(1+cosA)}{2}$
=$\frac{1}{2}(a+c)+\frac{1}{2}(acosC+ccosA)$
=$\frac{1}{2}(a+c)+\frac{1}{2}(a•\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$$+c•\frac{^{2}+{c}^{2}-{a}^{2}}{2bc})$
=$\frac{1}{2}(a+c)+\frac{1}{2}b≥\sqrt{ac}+\frac{2}$
=$b+\frac{2}=\frac{3}{2}b$.
∴acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$≥$\frac{3}{2}$b.

點(diǎn)評(píng) 本題考查三角函數(shù)中的恒等變換應(yīng)用,訓(xùn)練了余弦定理、基本不等式在解題中的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù)
x3456
y2.53.545
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=lnx-x.
(1)求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)設(shè)a>0,若對(duì)于任意的x1,x2∈(0,+∞)都有|f(x1)|>$\frac{aln{x}_{2}}{{x}_{2}}$成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)n>m>0,試比較$\frac{f(m)+m-[f(n)+n]}{m-n}$與$\frac{2m}{{m}^{2}+{n}^{2}}$的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)y=(1+cos2x)•sin2x是( 。
A.以π為周期的奇函數(shù)B.以$\frac{π}{2}$為周期的奇函數(shù)
C.以π為周期的偶函數(shù)D.以$\frac{π}{2}$為周期的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知X~N(5,σ2),若P(3≤X≤5)=0.4,則P(X≤7)=(  )
A.0.9B.0.8C.0.7D.0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知角α(-π≤α<π)的終邊過(guò)點(diǎn)P(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),則α=$-\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a5=14-a6,則S10=( 。
A.35B.70C.28D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若銳角△ABC的面積為10,且AB=5,AC=8,則BC等于$\sqrt{89-40\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知向量$\overrightarrow a$,$\overrightarrow b$,滿足|$\overrightarrow a$|=1,|$\overrightarrow b$|=1,|k$\overrightarrow a$+$\overrightarrow b$|=$\sqrt{3}$|$\overrightarrow a$-k$\overrightarrow b$|,k>0,
(1)用k表示$\overrightarrow a$•$\overrightarrow b$,并求$\overrightarrow a$與$\overrightarrow b$的夾角θ的最大值;
【注:若a>0,b>0,則a+b≥2$\sqrt{ab}$,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào)】
(2)如果$\overrightarrow a$∥$\overrightarrow b$,求實(shí)數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案