已知tan(A-B)=
2
3
,tan(B+
π
4
)=
1
2
,則tan(A+
π
4
)=
 
考點:兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:由條件利用兩角和的正切公式計算求得結(jié)果.
解答: 解:∵tan(A-B)=
2
3
,tan(B+
π
4
)=
1
2

則tan(A+
π
4
)=tan[(A-B)+(B+
π
4
)]=
tan(A-B)+tan(B+
π
4
)
1-tan(A-B)tan(B+
π
4
)
=
2
3
+
1
2
1-
2
3
×
1
2
=
7
4
,
故答案為:
7
4
點評:本題主要考查兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=2n2-2n,數(shù)列{bn}的前n項和Tn=3-bn
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn=
1
12
an•bn,求數(shù)列{cn}的前n項和Rn的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x.
(Ⅰ)求函數(shù)f(x)的圖象在點A(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[-
3
2
,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將各項均為正數(shù)的數(shù)列{an}排成如下所示的三角形數(shù)陣(第n行有n個數(shù),同一行中,下標小的數(shù)排在左邊).bn表示數(shù)陣中,第n行、第1列的數(shù).已知數(shù)列{bn}為等比數(shù)列,且從第3行開始,各行均構(gòu)成公差為d的等差數(shù)列(第3行的3個數(shù)構(gòu)成公差為d的等差數(shù)列;第4行的4個數(shù)構(gòu)成公差為d的等差數(shù)列,…),a1=1,a12=17,a18=34.

(1)求數(shù)陣中第m行、第n列的數(shù)A(m,n)(用m、n表示).
(2)求a2014的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列1,1+2,1+2+22,…1+2+22+2n-1,…的前n項和為Sn,則S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出命題,“若α=
π
3
,則cosα=
1
2
”的否命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,對于任意相鄰三點都不共線的有序整點列(整點即橫縱坐標都是整數(shù)的點)A(n):A1,A2,A3,…,An與B(n):B1,B2,B3,…,B(n),其中n≥3,若同時滿足:①兩點列的起點和終點分別相同;②線段AiAi+1⊥BiBi+1,其中i=1,2,3,…,n-1,則稱A(n)與B(n)互為正交點列.則A(3):A1(0,2),A2(3,0)),A3(5,2)的正交點列B(3)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x-3|-|x+2|≥m有解,則實數(shù)m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3x
•sinx,則f′(1)=
 

查看答案和解析>>

同步練習(xí)冊答案