7.求函數(shù)y=x-ex的單調(diào)區(qū)間.

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:由函數(shù)y=x-ex的,
可得y′=1-ex,
由y′=1-ex<0,解得x>0,
由y′=1-ex>0,解得:x<0
∴函數(shù)f(x)=x-ex的單調(diào)遞減區(qū)間是(0,+∞),遞增區(qū)間是(-∞,0).

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的方法是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.觀察下列等式:
①cos2α=2cos2α-1;
②cos4α=8cos4α-8cos2α+1;
③cos6α=32cos6α-48cos4α+18cos2α-1;
④cos8α=128cos8α-256cos6α+160cos4α-32cos2α+1;
⑤cos10α=mcos10α-1280cos8α+1120cos6α+ncos4α+pcos2α-1.
可以推測(cè),m+n-p=62.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=2x-a•2-x的反函數(shù)是f-1(x),f-1(x)在定義域上是奇函數(shù),則正實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知兩集合A={x|x2+x-2≤0},B={x|$\frac{1}{x}<2$},則A∩B=( 。
A.[-2,0)B.($\frac{1}{2}$,1]C.[-2,0)∪($\frac{1}{2}$,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)x<-1,求函數(shù)y=$\frac{{x}^{2}+7x+10}{x+1}$的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.等比數(shù)列{an}滿足a3a5=64,a3+a5=20,且公比為大于1的數(shù).
(1)求{an}通項(xiàng)公式;
(2)設(shè)bn=2n-1,求{an+bn}前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow p=(cosα-5,-sinα),\overrightarrow q=(sinα-5,cosα),\overrightarrow p∥\overrightarrow q$,且α∈(0,π).
(1)求tan2α的值;
(2)求sin2($\frac{α}{2}$$+\frac{π}{6}$)-sin($α+\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax2-blnx在點(diǎn)(1,f(1))處的切線方程為y=1;
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知p:?m∈R,x2-mx-1=0有解,q:?x0∈N,${x_0}^2-2{x_0}-1≤0$;則下列選項(xiàng)中是假命題的為( 。
A.p∧qB.p∧(¬q)C.p∨qD.p∨(¬q)

查看答案和解析>>

同步練習(xí)冊(cè)答案