7.已知p:?m∈R,x2-mx-1=0有解,q:?x0∈N,${x_0}^2-2{x_0}-1≤0$;則下列選項中是假命題的為( 。
A.p∧qB.p∧(¬q)C.p∨qD.p∨(¬q)

分析 對于m命題p:方程x2-mx-1=0,則△=m2+4>0,即可判斷出命題p的真假.對于命題q:由x2-x-1≤0,解得$\frac{1-\sqrt{5}}{2}$≤x≤$\frac{1+\sqrt{5}}{2}$,即可判斷出命題q的真假.

解答 解:對于m命題p:方程x2-mx-1=0,則△=m2+4>0,因此:?m∈R,x2-mx-1=0有解,可得:命題p是真命題.
對于命題q:由x2-x-1≤0,解得$\frac{1-\sqrt{5}}{2}$≤x≤$\frac{1+\sqrt{5}}{2}$,因此存在x=0,1∈N,使得x2-x-1≤0成立,因此是真命題.
∴下列選項中是假命題的為p∧(¬q),
故選:B.

點評 本題考查了不等式的解法、簡易邏輯的判定方法、一元二次方程的實數(shù)根與判別式的關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求函數(shù)y=x-ex的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等差數(shù)列{an}的前n項和為Sn,若$\frac{{S}_{n}}{{a}_{n}}$=$\frac{n+1}{2}$,則下列結(jié)論中正確的是(  )
A.$\frac{{a}_{2}}{{a}_{3}}$=2B.$\frac{{a}_{2}}{{a}_{3}}$=$\frac{3}{2}$C.$\frac{{a}_{2}}{{a}_{3}}$=$\frac{2}{3}$D.$\frac{{a}_{2}}{{a}_{3}}$=$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.隨機變量X~N(μ,σ2),F(xiàn)(x)為分布函數(shù),Y=F(x),則概率P(Y$≤\frac{1}{2}$)( 。
A.與μ,σ有關(guān);B.與μ有關(guān),與σ無關(guān);
C.與σ有關(guān),與μ無關(guān);D.與μ,σ無關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160cm和184cm之間,將測量結(jié)果按如下方式分成6組:第一組[160,164],第二組[164,168],…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):若ξ-N(μ,σ2),則p(μ-σ<ξ≤μ+σ)=0.6826,p(μ-2σ<ξ≤μ+2σ)=0.9544,p(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵樹,分別從甲、乙兩組中隨機選取一名同學(xué),則這兩名同學(xué)的植樹總棵樹為20棵的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)隨機變量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=$\frac{5}{9}$,求E(2η+1),D(2η+1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線ax+3y-1=0與直線3x-y+2=0互相垂直,則a=( 。
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1-x}{{e}^{x}}$.
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)的零點和極值;
(3)若對任意x1,x2∈[a,+∞),都有f(x1)-f(x2)≥-$\frac{1}{{e}^{2}}$成立,求實數(shù)a的最小值.

查看答案和解析>>

同步練習(xí)冊答案