【題目】下列關于命題的說法錯誤的是( )
A.命題“若,則”的逆否命題為“若,則”
B.“”是“函數在區(qū)間上為增函數”的充分不必要條件
C.“若為的極值點,則”的逆命題為真
D.命題:,的否定是,
【答案】C
【解析】
由題意結合逆否命題的概念可判斷A,由對數函數的性質結合充分條件、必要條件的概念可判斷B,由逆命題的概念結合極值點的概念可判斷C,由全稱命題的否定可判斷D,即可得解.
對于A,由逆否命題的概念可得命題“若,則”的逆否命題為“若,則”,故A正確;
對于B,若,則函數在區(qū)間上為增函數;若函數在區(qū)間上為增函數,則只需滿足;所以“”是“函數在區(qū)間上為增函數”的充分不必要條件,故B正確;
對于C,“若為的極值點,則” 的逆命題為“若,則為的極值點”,對函數,,但不是函數的極值點,所以原命題的逆命題為假命題,故C錯誤;
對于D,由全稱命題的否定可知命題:,的否定是,,故D正確.
故選:C.
科目:高中數學 來源: 題型:
【題目】如圖,橢圓的右頂點為,左、右焦點分別為、,過點
且斜率為的直線與軸交于點, 與橢圓交于另一個點,且點在軸上的射影恰好為點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率大于的直線與橢圓交于兩點(),若,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】年初,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了有效地控制病毒的傳播,某醫(yī)院組織專家統(tǒng)計了該地區(qū)名患者新冠病毒潛伏期的相關信息,數據經過匯總整理得到如下圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數的患者,稱為“短潛伏者”,潛伏期高于平均數的患者,稱為“長潛伏者”.
(1)求這名患者潛伏期的平均數(同一組中的數據用該組區(qū)間的中點值作代表)和眾數;
(2)為研究潛伏期與患者年齡的關系,得到如下列聯(lián)表,請將列聯(lián)表補充完整,并根據列聯(lián)表判斷是否有的把握認為潛伏期長短與患者年齡有關;
短潛伏者 | 長潛伏者 | 合計 | |
歲及以上 | |||
歲以下 | |||
合計 |
(3)研究發(fā)現,某藥物對新冠病毒有一定的抑制作用,需要從這人中分層選取位歲以下的患者做Ⅰ期臨床試驗,再從選取的人中隨機抽取兩人做Ⅱ期臨床試驗,求兩人中恰有人為“短潛伏者”的概率.
附表及公式:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科研課題組通過一款手機APP軟件,調查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數分布表
周跑量(km/周) | |||||||||
人數 | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:
注:請先用鉛筆畫,確定后再用黑色水筆描黑
(2)根據以上圖表數據計算得樣本的平均數為,試求樣本的中位數(保留一位小數),并用平均數、中位數等數字特征估計該市跑步愛好者周跑量的分布特點
(3)根據跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
類別 | 休閑跑者 | 核心跑者 | 精英跑者 |
裝備價格(單位:元) | 2500 | 4000 | 4500 |
根據以上數據,估計該市每位跑步愛好者購買裝備,平均需要花費多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,,(單位:克)中,經統(tǒng)計得頻率分布直方圖如圖所示.
(1)經計算估計這組數據的中位數;
(2)某經銷商來收購芒果,以各組數據的中間數代表這組數據的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經銷商提出如下兩種收購方案:
A:所有芒果以10元/千克收購;
B:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在三棱柱中,平面,,.
(1)求證:平面;
(2)若是棱的中點,在棱上是否存在一點,使得//平面?若存在,請確定點的位置:若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形為平行四邊形,且,點,為平面外兩點,且,.
(1)在多面體中,請寫出一個與垂直的平面,并說明理由;
(2)若,求直線與平面所成的角.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com