8.用部分自然構(gòu)造如圖的數(shù)表:用aij(i≥j)表示第i行第j個(gè)數(shù)(i,j∈N+),使得ai1=aii=i.每行中的其他各數(shù)分別等于其“肩膀”上的兩個(gè)數(shù)之和.設(shè)第n(n∈N+)行的第二個(gè)數(shù)為bn(n≥2).
(1)寫出bn+1與bn的關(guān)系,并求bn(n≥2);
(2)設(shè)數(shù)列{cn}前n項(xiàng)和為Tn,且滿足${c_1}=1,{c_n}=\frac{1}{{{b_n}-1}},({n≥2})$,求證:Tn<3.

分析 (1)由題意可得bn+1=bn+n,n≥2,運(yùn)用累加法,即可得到bn
(2)求得n≥2時(shí),cn=$\frac{2}{n(n-1)}$=2($\frac{1}{n-1}$-$\frac{1}{n}$),運(yùn)用數(shù)列的求和方法:裂項(xiàng)相消求和,化簡(jiǎn)整理即可得到所求和,由不等式的性質(zhì),即可得證.

解答 解:(1)由已知得b2=2,bn+1=bn+n,n≥2,
當(dāng)n≥2時(shí),b3-b2=2,b4-b3=3,…,bn-bn-1=n-1,
累加得bn-b2=2+3+…+n-1=$\frac{1}{2}$(n-2)(n+1),
則bn=1+$\frac{1}{2}$n(n-1)(n≥2);
(2)證明:由${c_1}=1,{c_n}=\frac{1}{{{b_n}-1}},({n≥2})$,
由(1)可得n≥2時(shí),cn=$\frac{2}{n(n-1)}$=2($\frac{1}{n-1}$-$\frac{1}{n}$),
前n項(xiàng)和為Tn=1+2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$)
=1+2(1-$\frac{1}{n}$)=3-$\frac{2}{n}$<3.

點(diǎn)評(píng) 本題考查數(shù)列的遞推關(guān)系和通項(xiàng)公式的求法,注意運(yùn)用累加法,考查數(shù)列的求和方法:裂項(xiàng)相消求和,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高二文下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)

(1)求上的值域;

(2)若對(duì)于任意,總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在下列函數(shù)中,當(dāng)x取正數(shù)時(shí),最小值為2的是( 。
A.$y=x+\frac{4}{x}$B.$y=lg(x+1)+\frac{1}{lg(x+1)}$
C.$y=\sqrt{{x^2}+1}+\frac{1}{{\sqrt{{x^2}+1}}}$D.$y=sinx+\frac{1}{sinx},({0<x<\frac{π}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(k,10),且A、B、C三點(diǎn)共線,則k=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow a,\overrightarrow b$均為單位向量,它們的夾角為$\frac{π}{3}$,則$|{\overrightarrow a+\overrightarrow b}|$等于( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),O為坐標(biāo)原點(diǎn),A為雙曲線的右頂點(diǎn),且以點(diǎn)A為圓心的圓與雙曲線C 經(jīng)過第一、三象限的漸近線交于P、Q兩點(diǎn),若∠PAQ=60°,且$\overrightarrow{OQ}$=4$\overrightarrow{OP}$,則雙曲線C的離心率為$\frac{2\sqrt{13}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若角2α的終邊在y軸的非負(fù)半軸上,則角α的終邊位于第一、三象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=x2+a2+|x+a|
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)的最小值大于3,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若三點(diǎn)A(-1,-2),B(4,8),C(5,x)在同一條直線上,則實(shí)數(shù)x的值為(  )
A.10B.-10C.5D.-5

查看答案和解析>>

同步練習(xí)冊(cè)答案