3.已知3sin2α+2sin2β=1,3sin2α-2sin2β=0,且α、β都是銳角,則α+2β的值為(  )
A.$\frac{π}{2}$B.πC.$\frac{π}{3}$D.$\frac{π}{4}$

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sinα的值,利用兩角和的正弦函數(shù)公式可求sin(α+2β)的值,結(jié)合角α+2β的范圍即可得解.

解答 解:由3sin2α+2sin2β=1,得:3sin2α=cos2β.
由3sin2α-2sin2β=0,得:sin2β=$\frac{3}{2}$sin2α=3sinαcosα.
∴sin22β+cos22β=9sin2αcos2α+9sin4α
∴9sin2α=1.
∴sinα=$\frac{1}{3}$(α為銳角)
∴sin(α+2β)=sinαcos2β+cosαsin2β=sinα(3sin2α)+cosα(3sinαcosα)=3sinα(sin2α+cos2α)=3sinα=1,
∵α+2β∈(0,$\frac{3π}{2}$),
∴α+2β=$\frac{π}{2}$.
故選:A.

點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系的運(yùn)用以及二倍角公式,解題的關(guān)鍵是求出sin(α+2β),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.4π+8B.$\frac{4π}{3}$+24C.4π+24D.$\frac{4π}{3}$+8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若$θ∈[{0,\frac{π}{2}}]$,$cos2θ=\frac{7}{25}$,則sinθ=( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{{\sqrt{7}}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.方程y=-$\sqrt{25-{x}^{2}}$表示的曲線( 。
A.一條射線B.一個(gè)圓C.兩條射線D.半個(gè)圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)面A1ADD1⊥底面ABCD,D1A=D1D=$\sqrt{2}$,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(1)求證:A1O∥平面AB1C
(2)求直線B1C與平面C1CDD1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)i為虛數(shù)單位,復(fù)數(shù)z=i(i-1)則復(fù)數(shù)z的共軛復(fù)數(shù)$\bar z$對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{1}{x}$
(1)利用定義法求函數(shù)f(x)=$\frac{1}{x}$的導(dǎo)函數(shù)
(2)求曲線f(x)=$\frac{1}{x}$過(2,0)的切線方程
(3)求(2)的切線與曲線$f(x)=\frac{1}{x}$及直線x=2所圍成的曲邊圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計(jì)算:${∫}_{1}^{3}$(x-5)dx=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.5個(gè)排成一排,在下列情況下,各有多少種不同排法?
(1)甲排頭
(2)甲不排頭,也不排尾
(3)甲、乙、丙三人必須在一起
(4)甲、乙、丙三人兩兩不相鄰
(5)甲在乙的左邊(不一定相鄰)
(6)甲不排頭,乙不排當(dāng)中.

查看答案和解析>>

同步練習(xí)冊答案