1.函數(shù)$f(x)=\frac{sin2x}{{{e^{|x|}}}}$的大致圖象是( 。
A.B.
C.D.

分析 利用函數(shù)的奇偶性排除選項(xiàng),通過函數(shù)的變化趨勢,推出結(jié)果即可.

解答 解:因?yàn)閒(x)是奇函數(shù),排除B,D,當(dāng)x>0,且無限趨近于0時(shí),f(x)>0,排除C,
故選:A.

點(diǎn)評 本題考查函數(shù)的圖象的判斷,函數(shù)的奇偶性的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知F是拋物線C:x2=4y的焦點(diǎn),A(x1,y1),B(x2,y2)為拋物線C上不同的兩點(diǎn),l1,l2分別是拋物線C在點(diǎn)A、點(diǎn)B處的切線,P(x0,y0)是l1,l2的交點(diǎn).
(1)當(dāng)直線AB經(jīng)過焦點(diǎn)F時(shí),求證:點(diǎn)P在定直線上;
(2)若|PF|=2,求|AF|•|BF|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x3-3x
(1)求f(x)的單調(diào)區(qū)間;  
(2)求f(x)在區(qū)間[-3,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)x、y滿足約束條件$\left\{{\begin{array}{l}{y≥0}\\{x-y+1≥0}\\{x+y-3≤0}\end{array}}\right.$,則z=22x-y的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求證:(1)sin($\frac{3π}{2}$-α)=-cosα;
(2)cos($\frac{3π}{2}$+α)=sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,若不等式2f(-ax+lnx+1)+f(ax-lnx-1)≥3f(l)對x∈[1,3]恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[2,e]B.[$\frac{1}{e}$,+∞)C.[$\frac{1}{e}$,e]D.[$\frac{1}{e}$,$\frac{2+ln3}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),且焦距為2$\sqrt{2}$,動(dòng)弦AB平行于x軸,且|F1A|+|F1B|=4.
(1)求橢圓C的方程;
(2)若點(diǎn)P是橢圓C上異于點(diǎn)A,B的任意一點(diǎn),且直線PA、PB分別與y軸交于點(diǎn)M、N,若MF2、NF2的斜率分別為k1、k2,求證:k1•k2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)α、β分別是方程log2x+x-3=0和2x+x-3=0的根,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列選項(xiàng)中,說法正確的是( 。
A.命題“若am2<bm2,則a<b”的逆命題是真命題
B.命題“若$\overrightarrow{a}$=-$\overrightarrow$,則|$\overrightarrow{a}$|=|$\overrightarrow$|”的否命題是真命題
C.x=1是$x-1=\sqrt{x-1}$的必要不充分條件
D.ab>1是a>1且b>1的必要不充分條件

查看答案和解析>>

同步練習(xí)冊答案