10.定義在R上的函數(shù)f(x)的圖象如圖所示,使關(guān)于x的不等式xf′(x)<0成立的是( 。
A.(-2,-1)∪(1,2)B.(-∞,-1)∪(0,1)C.(-1,0)∪(1,+∞)D.(-∞,-2)∪(2,+∞)

分析 通過讀圖,求出各個(gè)區(qū)間上函數(shù)f′(x)的符號(hào),從而求出不等式的解集.

解答 解:由圖象得:
x∈(-∞,-1)時(shí),f′(x)>0,xf′(x)<0,
x∈(-1,0)時(shí),f′(x)<0,xf′(x)>0,
x∈(0,1)時(shí),f′(x)<0,xf′(x)<0,
x∈(1,2)時(shí),f′(x)>0,xf′(x)>0,
x∈(2,+∞)時(shí),f′(x)>0,xf′(x)>0,
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)為偶函數(shù),對(duì)于任意的x>0的數(shù)都有f(2+x)=-2f(2-x),f(1)=4,則f(-3)等于( 。
A.2B.-2C.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)y=f(x)的圖象與y=2x的圖象關(guān)于直線y=x對(duì)稱,則f(2)+f(4)=( 。
A.6B.3C.17D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=(x-a)ex(x∈R),函數(shù)g(x)=bx-lnx,其中a∈R,b<0.
(1)若函數(shù)g(x)在點(diǎn)(1,g(l))處的切線與直線x+2y-3=0垂直,求b的值;
(2)求函數(shù)f(x)在區(qū)間[0,1]上的最小值;
(3)若存在區(qū)間M,使得函數(shù)f(x)和g(x)在區(qū)間M上具有相同的單調(diào)性,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f′(x),若f(x)+f′(x)<1,f(0)=2016,則不等式exf(x)-ex>2015(其中e為自然對(duì)數(shù)的底數(shù))的解集為( 。
A.(2015,+∞)B.(-∞,0)∪(2015,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(a+1)lnx+ax2+1.
(Ⅰ)若函數(shù)f(x)在x=1處切線的斜率k=-$\frac{1}{2}$,求實(shí)數(shù)a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若xf′(x)≥x2+x+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=x3+2x2-ax+1在區(qū)間(0,1)上不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(0,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-ax(a∈R)
(1)當(dāng)a=3時(shí),判斷函數(shù)g(x)=x2+f(x)的單調(diào)性;
(2)若a>0,函數(shù)f(x)在x=1的切線l也是曲線x2+y2+2x-8y+9=0的切線,求實(shí)數(shù)a的值,并寫出直線l的方程;
(3)若a=1,證明$|{f(x)}|>\frac{lnx}{x}+\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線的一個(gè)焦點(diǎn)F(0,5),它的漸近線方程為y=±2x,則該雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{20}$-$\frac{{x}^{2}}{5}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案