19.已知橢圓$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率為e,直線l:y=x+1經(jīng)過橢圓C的一個焦點,點(1,1)關于直線l的對稱點也在橢圓C上,則$\frac{2e}{{m}^{2}+1}$+m2的最小值為( 。
A.1B.$\sqrt{2}$C.2$\sqrt{2}$-1D.均不正確

分析 求出點(1,1)關于直線l的對稱點坐標,利用點(1,1)關于直線l的對稱點也在橢圓C上,求出a,再求出c,可得離心率,代入,利用基本不等式,即可求出$\frac{2e}{{m}^{2}+1}$+m2的最小值.

解答 解:由題意,橢圓C的一個焦點坐標為(0,1)
設點(1,1)關于直線l的對稱點坐標為(s,t),則$\left\{\begin{array}{l}{\frac{t-1}{s-1}•1=-1}\\{\frac{1+t}{2}=\frac{1+s}{2}+1}\end{array}\right.$,
∴s=0,t=2,
∵點(1,1)關于直線l的對稱點也在橢圓C上,
∴a=2,
∴e=$\frac{c}{a}$=$\frac{1}{2}$,
∴$\frac{2e}{{m}^{2}+1}$+m2=$\frac{1}{{m}^{2}+1}$+m2+1-1≥2-1=1(m=0時取等號),
∴$\frac{2e}{{m}^{2}+1}$+m2的最小值為1,
故選:A.

點評 本題考查點關于直線對稱點的求法,考查橢圓的性質,考查基本不等式的運用,正確求出橢圓的離心率是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=f(x)圖象上不同兩點A(x1,y1),B(x2,y2)處的切線的斜率分別是kA,kB,規(guī)定K(A,B)=$\frac{{|{k_A}-{k_B}|}}{|AB|}$(|AB|為線段AB的長度)叫做曲線y=f(x)在點A與點B之間的“近似曲率”.設曲線y=$\frac{1}{x}$上兩點A(a,$\frac{1}{a}$),B($\frac{1}{a}$,a)(a>0且a≠1),若m•K(A,B)>1恒成立,則實數(shù)m的取值范圍是[$\frac{\sqrt{2}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.銳角△ABC三個內角A、B、C,它們的對邊分別為a、b、c,已知C=$\frac{π}{4}$,c=$\sqrt{2}$,求a2+b2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設數(shù)列{an}的前n項和為Sn,且a1=$\frac{1}{2}$,{Sn+nan}為常數(shù)列,則an=( 。
A.$\frac{1}{n(n+1)}$B.$\frac{1}{{2}^{n}}$C.$\frac{3}{(n+1)(n+2)}$D.$\frac{5-2n}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上存在四個不同的點A、B、C、D,使四邊形ABCD為菱形,則$\frac{a}$的取值范圍為$\frac{a}$>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0).
(1)若點(-$\sqrt{3}$,1)在橢圓上,且(2,0)是它的一個焦點,求橢圓方程;
(2)若B為橢圓的下頂點,F(xiàn)是橢圓的右焦點,直線BF與橢圓的另一個交點為D,P為橢圓右準線上一點,是否存在這樣的橢圓使得△PBD為等邊三角形?若存在,求出橢圓的離心率;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若一個球的半徑與它的內接圓錐的底面半徑之比為$\frac{5}{3}$,且內接圓錐的軸截面為銳角三角形,則該球的體積與它的內接圓錐的體積之比等于$\frac{500}{81}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在等差數(shù)列{an}中,a3+a6=a4+5,且a2不大于1,則a8的取值范圍是(  )
A.(-∞,9]B.[9,+∞)C.(-∞,9)D.(9,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知雙曲線的中心在坐標原點,焦點在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點,雙曲線的右支上有一點P,∠F1PF2=$\frac{π}{3}$,且△PF1F2的面積為2$\sqrt{3}$,又雙曲線的離心率為2,求該雙曲線的方程.

查看答案和解析>>

同步練習冊答案