9.函數(shù)y=f(x)圖象上不同兩點A(x1,y1),B(x2,y2)處的切線的斜率分別是kA,kB,規(guī)定K(A,B)=$\frac{{|{k_A}-{k_B}|}}{|AB|}$(|AB|為線段AB的長度)叫做曲線y=f(x)在點A與點B之間的“近似曲率”.設曲線y=$\frac{1}{x}$上兩點A(a,$\frac{1}{a}$),B($\frac{1}{a}$,a)(a>0且a≠1),若m•K(A,B)>1恒成立,則實數(shù)m的取值范圍是[$\frac{\sqrt{2}}{2}$,+∞).

分析 求出y′=-$\frac{1}{{x}^{2}}$,求得A,B處切線的斜率,由新定義求出兩點A(x1,y1),B(x2,y2)之間的“近似曲率”,代入m•K(A,B)>1化簡,根據(jù)恒成立以及基本不等式,求出實數(shù)m的取值范圍.

解答 解:由y=$\frac{1}{x}$得y′=-$\frac{1}{{x}^{2}}$,
可得kA=-$\frac{1}{{a}^{2}}$,kB=-a2,
|AB|=$\sqrt{(a-\frac{1}{a})^{2}+(\frac{1}{a}-a)^{2}}$=$\sqrt{2}$|a-$\frac{1}{a}$|,
可得K(A,B)=$\frac{{|{k_A}-{k_B}|}}{|AB|}$=$\frac{|{a}^{2}-\frac{1}{{a}^{2}}|}{\sqrt{2}|a-\frac{1}{a}|}$=$\frac{|a+\frac{1}{a}|}{\sqrt{2}}$=$\frac{a+\frac{1}{a}}{\sqrt{2}}$,
由m•K(A,B)>1恒成立,
可得m>$\frac{\sqrt{2}}{a+\frac{1}{a}}$,由a+$\frac{1}{a}$≥2$\sqrt{a•\frac{1}{a}}$=2,
又a>0且a≠1,則等號不成立,
即有$\frac{\sqrt{2}}{a+\frac{1}{a}}$<$\frac{\sqrt{2}}{2}$,故m≥$\frac{\sqrt{2}}{2}$.
則實數(shù)m的取值范圍是[$\frac{\sqrt{2}}{2}$,+∞).
故答案為:[$\frac{\sqrt{2}}{2}$,+∞).

點評 本題考查新定義的函數(shù)的性質(zhì)與應用問題,導數(shù)的幾何意義,兩點間的距離公式,以及恒成立問題,解題時應根據(jù)函數(shù)的新定義的內(nèi)容進行分析、判斷,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,已知邊長為6的菱形ABCD,∠ABC=120°,AC與BD相交于O,將菱形ABCD沿對角線AC折起,使BD=3$\sqrt{2}$.

(1)若M是BC的中點,求證:在三棱錐D-ABC中,直線OM與平面ABD平行;
(2)求二面角A-BD-O的余弦值;
(3)在三棱錐D-ABC中,設點N是BD上的一個動點,試確定N點的位置,使得CN=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow$=(2,m),若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$垂直,則實數(shù)m的值為-$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=$\frac{{\sqrt{4-{x^2}}}}{{{{log}_2}x-1}}$的定義域為(0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知A,B為圓C:(x-a)2+(y-b)2=9(a,b∈R)上的兩個不同的點,且滿足|$\overrightarrow{CA}$+$\overrightarrow{CB}$|=2$\sqrt{2}$,則|$\overrightarrow{AB}$|=( 。
A.1B.$\sqrt{7}$C.2D.2$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知復數(shù)z滿足z=$\frac{5}{2-i}$,則|z|=(  )
A.2B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知M為△ABC內(nèi)一點,$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$,則△ABM和△ABC的面積之比為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知a,b∈R,i是虛數(shù)單位,若(2+i)(1-bi)=a+i,則a+b=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知橢圓$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率為e,直線l:y=x+1經(jīng)過橢圓C的一個焦點,點(1,1)關于直線l的對稱點也在橢圓C上,則$\frac{2e}{{m}^{2}+1}$+m2的最小值為( 。
A.1B.$\sqrt{2}$C.2$\sqrt{2}$-1D.均不正確

查看答案和解析>>

同步練習冊答案