20.若函數(shù)y=f(x)(x∈R)滿足f(x+1)=-$\frac{1}{f(x)}$,且x∈[-1,1]時(shí),f(x)=1-x2,g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點(diǎn)的個(gè)數(shù)為( 。
A.5B.7C.8D.10

分析 結(jié)合題意得到函數(shù)y=f(x)(x∈R)是周期為2的函數(shù),進(jìn)而根據(jù)f(x)=1-x2與函數(shù)g(x)的圖象得到交點(diǎn)個(gè)數(shù)即可.

解答 解:∵f(x+1)=-$\frac{1}{f(x)}$,
∴f(x+2)=f(x),
∴函數(shù)f(x)為周期為2的周期函數(shù),
∵x∈[-1,1]時(shí),f(x)=1-x2,所以作出它的圖象,
利用函數(shù)y=f(x)(x∈R)是周期為2函數(shù),
可作出y=f(x)在區(qū)間[-5,5]上的圖象,如圖所示:

故函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點(diǎn)的個(gè)數(shù)為8.
故選:C.

點(diǎn)評 本題的考點(diǎn)是函數(shù)零點(diǎn)與方程根的關(guān)系,主要考查函數(shù)零點(diǎn)的定義,關(guān)鍵是正確作出函數(shù)圖象,注意掌握周期函數(shù)的一些常見結(jié)論:若f(x+a)=f(x),則周期為a;若f(x+a)=-f(x),則周期為2a;若f(x+a)=$\frac{1}{f(x)}$,則周期為2a.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知x∈{1,0},則實(shí)數(shù)x的值為0或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=1,g(x)=x0B.f(x)=|x|,g(x)=$\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$
C.f(x)=x+2,g(x)=$\frac{{{x^2}-4}}{x-2}$D.f(x)=x,g(x)=($\sqrt{x}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-2ax+1.
(I)當(dāng)a=2,x∈[-2,3]時(shí),求函數(shù)的值域;
(II)求函數(shù)f(x)在[-1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列說法中,正確的是①②④.(寫出所有正確選項(xiàng))
①任取x>0,均有3x>2x
②函數(shù)是從其定義域到值域的映射.
③y=${(\sqrt{3})^{-x}}$是增函數(shù).   
④y=2|x|的最小值為1.
⑤既是奇函數(shù),又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某程序框圖如圖所示,若n=3,a0=1,a1=2,a2=3,a3=-2,x=2.則該程序運(yùn)行后輸出的值為( 。
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,已知三棱柱ABC-A1B1C1中,D是BC的中點(diǎn),D1是B1C1的中點(diǎn),設(shè)平面A1D1B∩平面ABC=l1,平面ADC1∩平面A1B1C1=l2,
(1)求證:l1∥l2;
(2)若此三棱柱是各棱長都相等且側(cè)棱垂直于底面,求A1B與AC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,$\overrightarrow{a}$=(2,0),|$\overrightarrow$|=1,則|$\overrightarrow{a}$+2$\overrightarrow$|=( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直線y=x被圓x2+(y-2)2=4截得的弦長為( 。
A.3B.3$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案