A. | $\frac{4mf(m+1)}{m+1}$>2$\sqrt{m}$f(2$\sqrt{m}$)>(m+1)f($\frac{4m}{m+1}$) | B. | $\frac{4mf(m+1)}{m+1}$<2$\sqrt{m}$f(2$\sqrt{m}$)<(m+1)f($\frac{4m}{m+1}$) | ||
C. | 2$\sqrt{m}$f(2$\sqrt{m}$)>$\frac{4mf(m+1)}{m+1}$>(m+1)f($\frac{4m}{m+1}$) | D. | 2$\sqrt{m}$f(2$\sqrt{m}$)<$\frac{4mf(m+1)}{m+1}$<(m+1)f($\frac{4m}{m+1}$) |
分析 構造函數(shù)g(x)=$\frac{f(x)}{x}$,利用函數(shù)的單調性,判斷即可.
解答 解:設函數(shù)$g(x)=\frac{f(x)}{x}$,$g'(x)=\frac{1-ax-xlnx}{{x{e^2}}}$
則g(x)在(1,+∞)上單調遞減.
由于m>1,由基本不等式可得$m+1>2\sqrt{m}>\frac{4m}{m+1}>1$,
那么$g(m+1)<g(2\sqrt{m})<g(\frac{4m}{m+1})$,
即$\frac{f(m+1)}{m+1}<\frac{{f(2\sqrt{m})}}{{2\sqrt{m}}}<\frac{m+1}{4m}f(\frac{4m}{m+1})$,
不等式各項同乘以4m,
即$\frac{4mf(m+1)}{m+1}$<2$\sqrt{m}$f(2$\sqrt{m}$)<(m+1)f($\frac{4m}{m+1}$)
故選B.
點評 本題主要考查函數(shù)的單調性,屬于中等題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,e) | B. | (e,+∞) | C. | (0,$\frac{1}{e}$) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (1,+∞) | D. | (1,$\sqrt{2}$] |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com