精英家教網 > 高中數學 > 題目詳情

【題目】若正項數列滿足:,則稱此數列為“比差等數列”.

1)試寫出一個“比差等數列”的前項;

2)設數列是一個“比差等數列”,問是否存在最小值,如存在,求出最小值;如不存在,請說明理由;

3)已知數列是一個“比差等數列”,為其前項的和,試證明:

【答案】1、(答案不唯一);(2)存在,且的最小值為;(3)證明見解析.

【解析】

1)根據“比差等數列”的定義得出,由,可得出,然后對取一個大于的值,可得出一個符合條件的“比差等數列”的前項;

2)由題意得出,且,利用基本不等式可求出的最小值;

3)由可推出,利用數學歸納法證明,由此得出,、、、,然后利用同向不等式的可加性可證明出成立.

1)由于數列為“比差等數列”,則,可得.

由于數列每項都是正數,則,可得出.

,則,.

因此,“比差等數列”的前項可以是、、(答案不唯一);

2)由(1)可知,,則

,

當且僅當時,等號成立,因此,有最小值

3)由題意可得.

由于雙勾函數上是增函數,

,且,則,

同理可得.

猜想,當時,.

假設當時,猜想成立,即

那么當時,由于函數上是增函數,

,

所以,.

由歸納原理可知,當時,.

于是有、、,

將上述不等式全部相加得.

因此,.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數).

(1)討論函數的單調性;

(2)若,討論函數在區(qū)間上的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解某校學生參加社區(qū)服務的情況,采用按性別分層抽樣的方法進行調查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為n的樣本,得到一周參加社區(qū)服務的時間的統(tǒng)計數據如下表:

超過1小時

不超過1小時

20

8

12

m

1)求m,n

2)能否有95多的把握認為該校學生一周參加社區(qū)服務時間是否超過1小時與性別有關?

3)以樣本中學生參加社區(qū)服務時間超過1小時的頻率作為該事件發(fā)生的概率,現從該校學生中隨機調查6名學生,試估計6名學生中一周參加社區(qū)服務時間超過1小時的人數.

附:

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為考查某種疫苗預防疾病的效果,進行動物實驗,得到統(tǒng)計數據如下:

未發(fā)病

發(fā)病

總計

未注射疫苗

20

注射疫苗

30

總計

50

50

100

現從所有試驗動物中任取一只,取到“注射疫苗”動物的概率為.

(1)求列聯表中的數據,,,的值;

(2)判斷疫苗是否有效?

(3)能夠有多大把握認為疫苗有效?

(參考公式,

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(題文)(2017·長春市二模)如圖,在四棱錐中,底面是菱形,,平面,點,分別為中點.

(1)求證:直線平面;

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】 的內角 的對邊分別為 已知

(1)求角 ;

(2)若 , ,求 的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是我國古代數學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經驗公式為:弧田面積=(弦+2.弧田(如圖),由圓弧和其所對弦所圍成,公式中指圓弧所對弦長,等于半徑長與圓心到弦的距離之差.

按照上述經驗公式計算所得弧田面積與其實際面積之間存在誤差.現有圓心角為,弦長等于9米的弧田.

1)計算弧田的實際面積;

2)按照《九章算術》中弧田面積的經驗公式計算所得結果與(1)中計算的弧田實際面積相差多少平方米?(結果保留兩位小數)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為且過點橢圓C軸的交點為AB(點A位于點B的上方),直線與橢圓C交于不同的兩點M、N(點M位于點N的上方).

(1)求橢圓C的方程;

(2)求△OMN面積的最大值;

(3)求證:直線AN和直線BM交點的縱坐標為常值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

1)若,判斷的奇偶性,并說明理由;

2)若,,求上的最小值;

3)若,,有三個不同實根,求的取值范圍.

查看答案和解析>>

同步練習冊答案