已知等比數(shù)列{an}中,
a2+a3
a1+a2
=2,a4=8,則a6=( 。
A、31B、32C、63D、64
考點(diǎn):等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)出等比數(shù)列的公比q,由已知列式求得首項和公比,再由等比數(shù)列的通項公式得答案.
解答: 解:設(shè)等比數(shù)列{an}的公比為q,
a2+a3
a1+a2
=2,a4=8,得
q(a1+a2)
a1+a2
=2
a1q3=8
,解得:
a1=1
q=2

a6=a1q5=25=32
故選:B.
點(diǎn)評:本題考查了等比數(shù)列的通項公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(x)≤|f(
π
6
)
|對x∈R恒成立且f(
π
2
)<f(π)
,則下列結(jié)論正確的是( 。
A、f(
11π
12
)=-1
B、f(
10
)>f(
π
5
)
C、f(x)是奇函數(shù)
D、[0,
π
6
]
是f(x)的單調(diào)遞增區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,非空集合A={x|
x-2
x-3
<0},B={x|(x-a)(x-a-4)<0}.
(1)當(dāng)a=-
3
2
時,求A∩B;
(2)命題p:x∈A,命題q:x∈B,若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x,x∈R,若f(2-a2)>f(a),則實數(shù)a的取值范圍是( 。
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|loga(x-1)<1,a>0且a≠1},
(1)若a=2,求集合A;
(2)若3∈A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的奇函數(shù)f(x)=x|x+m|.
(1)解不等式f(x)≥x;
(2)對任意x1,x2∈[1,1+a],總有|f(x1)-f(x2)|≤2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+ln (
x2+1
+x),g(x)=
x
1+x2
 ,   x>0 
-x
1+x2
 ,  x≤0 .
,則( 。
A、f(x)是奇函數(shù),g(x)是奇函數(shù)
B、f(x)是偶函數(shù),g(x)是偶函數(shù)
C、f(x)是奇函數(shù),g(x)是偶函數(shù)
D、f(x)是偶函數(shù),g(x)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算下列各式
(1)(2
7
9
)0.5+(0.1)-2+(2
10
27
)-
2
3
-3π°+
37
48

(2)(lg2)2+lg20×lg5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(
3
2
,sina),
b
=(cosa,
1
3
)且
a
b
,則銳角a為(  )
A、30°B、60°
C、45°D、75°

查看答案和解析>>

同步練習(xí)冊答案