(本題12分)
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn)。
(Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;
(Ⅱ)當(dāng)點(diǎn)P變化時,求證:以MN為直徑的圓必過圓O內(nèi)的一定點(diǎn)。
(Ⅰ);(Ⅱ)設(shè)點(diǎn)P的坐標(biāo)為, MN的中點(diǎn)坐標(biāo)為。
以MN為直徑的圓截x軸的線段長度為
為定值!唷必過⊙O 內(nèi)定點(diǎn)。
解析試題分析:建立直角坐標(biāo)系,⊙O的方程為,……2分
直線L的方程為。
(Ⅰ)∵∠PAB=30°,∴點(diǎn)P的坐標(biāo)為,
∴,。將x=4代入,得。
∴MN的中點(diǎn)坐標(biāo)為(4,0),MN=!嘁訫N為直徑的圓的方程為。
同理,當(dāng)點(diǎn)P在x軸下方時,所求圓的方程仍是!6分
(Ⅱ)設(shè)點(diǎn)P的坐標(biāo)為,∴(),∴。
∵,將x=4代入,得,
。∴,MN=。
MN的中點(diǎn)坐標(biāo)為。……10分
以MN為直徑的圓截x軸的線段長度為
為定值!唷必過⊙O 內(nèi)定點(diǎn)!12分
考點(diǎn):圓的方程的求法;直線與圓的位置關(guān)系;直線方程的點(diǎn)斜式。
點(diǎn)評:要求圓的方程,只需確定圓心和半徑即可。本題的計(jì)算量較大,在計(jì)算的過程中一定要仔細(xì)、認(rèn)真,避免出現(xiàn)計(jì)算錯誤。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知,圓C:,直線:.
(1) 當(dāng)a為何值時,直線與圓C相切;
(2) 當(dāng)直線與圓C相交于A、B兩點(diǎn),且時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
己知圓 直線.
(1) 求與圓相切, 且與直線平行的直線的方程;
(2) 若直線與圓有公共點(diǎn),且與直線垂直,求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓和定點(diǎn),由圓外一點(diǎn)向圓引切線,切點(diǎn)為,且滿足,
(Ⅰ)求實(shí)數(shù)間滿足的等量關(guān)系;
(Ⅱ)求線段長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知關(guān)于的方程:.
(1)當(dāng)為何值時,方程C表示圓。
(2)若圓C與直線相交于M,N兩點(diǎn),且|MN|=,求的值。
(3)在(2)條件下,是否存在直線,使得圓上有四點(diǎn)到直線的距離為,若存在,求出的范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)過點(diǎn)Q 作圓C:的切線,切點(diǎn)為D,且QD=4.
(1)求的值;
(2)設(shè)P是圓C上位于第一象限內(nèi)的任意一點(diǎn),過點(diǎn)P作圓C的切線l,且l交x軸于點(diǎn)A,交y 軸于點(diǎn)B,設(shè),求的最小值(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C1:(為參數(shù)),曲線C2:(t為參數(shù)).
(1)指出C1,C2各是什么曲線,并說明C1與C2公共點(diǎn)的個數(shù);
(2)若把C1,C2上各點(diǎn)的縱坐標(biāo)都拉伸為原來的兩倍,分別得到曲線.寫出的參數(shù)方程.與公共點(diǎn)的個數(shù)和C公共點(diǎn)的個數(shù)是否相同?說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com