13.已知12<a<60,15<b<36,求a-b及$\frac{a}$的取值范圍.

分析 利用不等式的基本性質(zhì)即可得出.

解答 解:∵15<b<36,∴-36<-b<-15.
∴12-36<a-b<60-15,
∴-24<a-b<45.
又$\frac{1}{36}$<$\frac{1}$<$\frac{1}{15}$,∴$\frac{12}{36}$<$\frac{a}$<$\frac{60}{15}$,
∴$\frac{1}{3}$<$\frac{a}$<4.
∴-24<a-b<45,$\frac{1}{3}$<$\frac{a}$<4.

點(diǎn)評(píng) 本題考查了不等式的基本性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在直角三角形ABC中,角C為直角,且AC=BC=2,點(diǎn)P是斜邊上的一個(gè)三等分點(diǎn),則$\overrightarrow{CP}•\overrightarrow{CB}+\overrightarrow{CP}•\overrightarrow{CA}$=( 。
A.0B.4C.$\frac{9}{4}$D.-$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=$\frac{1}{2}$(cosx-sinx)(cosx+sinx)+3a(sinx-cosx)+(4a-1)x在[-$\frac{π}{2}$,0]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A.$[{\frac{1}{7}\;\;,\;\;1}]$B.$[{-1\;\;,\;\;\frac{1}{7}}]$
C.$(-∞\;\;,\;\;-\frac{1}{7}]∪[1\;\;,\;\;+∞)$D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)E是△ABC所在平面內(nèi)一點(diǎn),且$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,則$\frac{{S}_{△ABE}}{{S}_{△ABC}}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.{an}是等比數(shù)列且an>0,且a2•a4+2a3•a5+a4•a6=25,則a3+a5═( 。
A.5B.±5C.10D.±10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法正確的是( 。
A.“f(0)”是“函數(shù) f(x)是奇函數(shù)”的充要條件
B.若 p:?x0∈R,x02-x0-1>0,則¬p:?x∈R,x2-x-1<0
C.若 p∧q為假命題,則p,q均為假命題
D.“若α=$\frac{π}{6}$,則sinα=$\frac{1}{2}$”的否命題是“若 α≠$\frac{π}{6}$,則 sinα≠$\frac{1}{2}$”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)某幾何體的三視圖如圖(尺寸的長度單位為m).則該幾何體的高為2m,底面面積為6m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)是定義在R上的奇函數(shù),對(duì)任意兩個(gè)不相等的正數(shù)x1,x2,都有$\frac{{{x_2}f({x_1})-{x_1}f({x_2})}}{{{x_1}-{x_2}}}$<0,記a=25f(0.22),b=f(1),c=-log53×f(log${\;}_{\frac{1}{3}}}$5),則( 。
A.c<b<aB.b<a<cC.c<a<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.以下四個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$與橢圓$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦點(diǎn);
②以拋物線的焦點(diǎn)弦(過焦點(diǎn)的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的;
③設(shè)A、B為兩個(gè)定點(diǎn),k為常數(shù),若|PA|-|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
④過定圓C上一點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$則動(dòng)點(diǎn)P的軌跡為橢圓.其中正確的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案