分析 (1)把a=-$\frac{{e}^{2}}{2}$代入函數(shù)解析式,求出函數(shù)的導(dǎo)函數(shù)由導(dǎo)函數(shù)的符號求得函數(shù)的單調(diào)區(qū)間;
(2)求出f′(x-1)的表達式以及g(x)的分段函數(shù),通過討論1<x<e和 x≥e的范圍分別證明得答案.
解答 解:(1)當a=-$\frac{{e}^{2}}{2}$,f(x)=ex-e2x,x∈(1,+∞),
f′(x)=ex-e2,
當x∈(1,2)時,f′(x)<0,f(x)在(1,2)上單調(diào)遞減;
當x∈(1,+∞)時,f′(x)>0,f(x)在(2,+∞)上單調(diào)遞增;
證明:(2)x∈(1,+∞),f′(x-1)=ex-1+2a,
g(x)=|$\frac{e}{x}$-lnx|+lnx=$\left\{\begin{array}{l}{\frac{e}{x},1<x<e}\\{2lnx-\frac{e}{x},x≥e}\end{array}\right.$,
①1<x<e時,證明當a∈(2,+∞)時,f′(x-1)>g(x)+a,
即證明:ex-1+2a>$\frac{e}{x}$+a,a>2,
即a>$\frac{e}{x}$-ex-1,
只需證明h(x)=$\frac{e}{x}$-ex-1≤2在(1,e)恒成立即可,
h′(x)=-$\frac{e}{{x}^{2}}$-ex-1<0,h(x)在(1,e)遞減,
h(x)最大值=h(1)=e-1<2,
∴a>$\frac{e}{x}$-ex-1,
∴1<x<e時,當a∈(2,+∞)時,f′(x-1)>g(x)+a;
②x≥e時,證明當a∈(2,+∞)時,f′(x-1)>g(x)+a,
即證明:ex-1+2a>2lnx-$\frac{e}{x}$+a,a>2,
令m(x)=ex-1-2lnx+$\frac{e}{x}$+a,(a>0,x≥e),
m′(x)=-$\frac{2}{x}$-$\frac{e}{{x}^{2}}$+ex-1,顯然m′(x)在[e,+∞)遞增,
而m′(e)=$\frac{e-3}{e}$≈0,m′(3)≈6,
近似看成m(x)在[e,+∞)遞增,
∴m(x)>m(x0)≈m(e)=ee-1+a-1>ee-1+1>0,
綜上,當a∈(2,+∞)時,f′(x-1)>g(x)+a.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,考查不等式的證明,是壓軸題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | m | C. | 2m | D. | 4m |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,+∞) | B. | (0,+∞) | C. | (-∞,0) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=cos x | B. | y=sin x | C. | y=tan x | D. | y=sin(x-$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
1-50 | 951-1000 | |
近視 | 41 | 32 |
不近視 | 9 | 18 |
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com