分析 求出集合A的x的范圍,再求出集合B 的x,y范圍,x∈∁RA,2$\sqrt{m}$∈B,根據(jù)元素與集合的關(guān)系進(jìn)行判斷.
解答 解:∵集合A={x|y=$\sqrt{{x^2}-4x+3}$}={x|x≤1或x≥3},
∴∁RA={x|1<x<3},
由題意:集合B 中的x∈∁RA,
∴集合B 的x范圍是:1<x<3.
又∵y=x+$\frac{m}{x}$≥2$\sqrt{m}$.(當(dāng)且僅當(dāng)x=$\sqrt{m}$時(shí)取等號),即:B={y|y≥2$\sqrt{m}$}(m>0).
要使2$\sqrt{m}$∈B,那么$\sqrt{m}∈(1,3)$,即$1<\sqrt{m}<3$.
解得:1<m<9
∴m取值范圍是:1<m<9
故答案為:(1,9)
點(diǎn)評 本題考查了一元二次不等式的計(jì)算,利用基本不等式求最值中取等號時(shí)的值的范圍問題,結(jié)合元素與集合的關(guān)系進(jìn)行判斷.屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | $\sqrt{2}$-1 | D. | $\sqrt{2}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com