分析 根據(jù)題意,先由題中條件求出焦點(diǎn)坐標(biāo)和漸近線方程,再代入點(diǎn)到直線的距離公式即可求出結(jié)論.
解答 解:根據(jù)題意,雙曲線的方程為$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1,其中a=3,b=4;
其焦點(diǎn)坐標(biāo)為(-5,0),(5,0),漸近線方程為y=±$\frac{4}{3}$x,即4x±3y=0,
則焦點(diǎn)到其漸近線的距離d=$\frac{|20|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{20}{5}$=4;
故答案為:4.
點(diǎn)評(píng) 本題考查雙曲線的簡單集合性質(zhì),關(guān)鍵是正確求出該雙曲線的焦點(diǎn)以及漸進(jìn)線方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\sqrt{2}$) | B. | ($\sqrt{2}$,$\sqrt{3}$) | C. | ($\sqrt{3},2$) | D. | (2,$\sqrt{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | [0,+∞) | C. | (-∞,0) | D. | (-∞,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6-3i | B. | 2-i | C. | 6-3i | D. | 6+3i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x+f(x) | B. | y=xf(x) | C. | y=x2+f(x) | D. | y=x2f(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{λ}{4}$ | B. | $\frac{λ}{2}$ | C. | λ | D. | 無法確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com