分析 由于不等式ax2+bx+c>0的解集為(α,β),可得:α,β是一元二次方程ax2+bx+c=0的兩個(gè)實(shí)數(shù)根,且a<0.利用根與系數(shù)的關(guān)系可把不等式cx2-bx+a>0化為(1+α)(1+β)x2-(α+β+2)x+1<0,即[(1+α)x-1][(1+β)x-1]<0,根據(jù)0<α<β,可得不等式的解集.
解答 解:∵不等式ax2+bx+c>0的解集為(α,β),
∴α,β是一元二次方程ax2+bx+c=0的兩個(gè)實(shí)數(shù)根,且a<0.
∴α+β=-$\frac{a}$,αβ=$\frac{c}{a}$,
∴b=-a(α+β),c=aαβ
∵(a+c-b)x2+(b-2a)x+a>0,
∴[a+aαβ+a(α+β)]x2+[-a(α+β)-2a]x+a>0,
∴[1+αβ+(α+β)]x2-[(α+β)+2]x+1<0,
∴[(1+α)x-1][(1+β)x-1]<0,
∵0<α<β,
∴$\frac{1}{1+α}$>$\frac{1}{1+β}$,
∴(x-$\frac{1}{1+α}$)(x-$\frac{1}{1+β}$)<0,
解得$\frac{1}{1+β}$<x<$\frac{1}{1+α}$,
故不等式的解集為($\frac{1}{1+β}$,$\frac{1}{1+α}$).
點(diǎn)評(píng) 本題考查了一元二次不等式的解法、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力和計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1對(duì) | B. | 2對(duì) | C. | 3對(duì) | D. | 4對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 25 | B. | 28 | C. | 29 | D. | 210 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com