空間四邊形ABCD中,若AB=BC=CD=DA=BD=1,則AC的取值范圍是
 
考點(diǎn):棱錐的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:運(yùn)用圖形得|
AC
|=|
AO
+
OB
|,再根據(jù)向量求解.
解答: 解:0為BD中點(diǎn),
∵AB=BC=CD=DA=BD=1,
∴|OA|=|OB|=
3
2

|
AC
|=|
AO
+
OB
|=
(
3
4
+
3
4
-2×
3
2
×
3
2
cosθ)
=
3
2
-
3
2
cosθ
,θ∈(0°,180°]
∴AC的取值范圍是(0,
3
]

故答案為:(0,
3
]
點(diǎn)評(píng):本題考查了向量的運(yùn)用求解距離,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a lg(x2-2x+3)(a>0,a≠1)在R上有最小值2.
(1)求a的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)A(0,
7
3
),B(7,0)的直線l1與過(2,1),(3,k+1)的直線l2和兩坐標(biāo)軸圍成的四邊形內(nèi)接于一個(gè)圓,則實(shí)數(shù)k的值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(2a-3)x+a-1,x≥0
ax,
 x<0
是R上的增函數(shù),那么實(shí)數(shù)a的取值范圍為(  )
A、(
3
2
,+∞)
B、(1,+∞)
C、[2,+∞)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知坐標(biāo)原點(diǎn)O在圓x2+y2-x+y+m=0外,則m的取值范圍是( 。
A、0<m<
1
2
B、m<
1
2
C、m≤
1
2
D、m>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

頂點(diǎn)在原點(diǎn),經(jīng)過圓C:x2+y2-2x+2
2
y=0的圓心且準(zhǔn)線與x軸垂直的拋物線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)某同學(xué)的6次數(shù)學(xué)測(cè)試成績(jī)(滿分100分)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖所示,給出關(guān)于該同學(xué)數(shù)學(xué)成績(jī)的以下說法:
①中位數(shù)為84;   
②眾數(shù)為85;
③平均數(shù)為85;   
④極差為12.
其中,正確說法的序號(hào)是(  )
A、①②B、③④C、②④D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖示,則下列說法不正確的是( 。
A、ω=2
B、f(x)的圖象關(guān)于點(diǎn)(
12
,0)
成中心對(duì)稱
C、k(x)=f(
x
2
-
π
12
)+x在R上單調(diào)遞增
D、已知函數(shù)g(x)=cos(ξx+η)圖象與f(x)的對(duì)稱軸完全相同,則ξ=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把一枚硬幣任意拋擲三次,事件A=“至少一次出現(xiàn)反面”,事件B=“恰有一次出現(xiàn)正面”,則P(B|A)=(  )
A、
1
7
B、
2
7
C、
3
7
D、
4
7

查看答案和解析>>

同步練習(xí)冊(cè)答案