過點(diǎn)A(0,
7
3
),B(7,0)的直線l1與過(2,1),(3,k+1)的直線l2和兩坐標(biāo)軸圍成的四邊形內(nèi)接于一個(gè)圓,則實(shí)數(shù)k的值為.
考點(diǎn):圓的一般方程
專題:計(jì)算題,直線與圓
分析:根據(jù)四點(diǎn)共圓的條件可知,四邊形的2個(gè)對角之和是180°,即l1與l2是相互垂直的,利用兩條直線斜率的乘積為-1,即可得到結(jié)論.
解答: 解:∵過點(diǎn)A﹙0,
7
3
﹚,B﹙7,0﹚的直線l1與過點(diǎn)C﹙2,1﹚,D﹙3,k+1)的直線l2和兩坐標(biāo)軸圍成的四邊形內(nèi)接于一個(gè)圓,
∴根據(jù)四點(diǎn)共圓的條件可知l1與l2是相互垂直,
即l1與l2對應(yīng)的斜率滿足k1•k2=-1,
7
3
-7
k+1-1
3-2
=-1,
解得k=3.
點(diǎn)評:本題主要考查直線垂直與直線斜率之間的關(guān)系,利用四點(diǎn)共圓得到直線垂直是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方體ABCD-A1B1C1D1,下面結(jié)論正確的是
 
(把你認(rèn)為正確的結(jié)論序號都填上)
①BD1⊥平面DA1C1
②過點(diǎn)B與異面直線AC和A1D所成角均為60°的有3條直線;
③四面體DA1D1C1與正方體ABCD-A1B1C1D1的內(nèi)切球半徑之比為
3
3

④與平面DA1C1平行的平面與正方體的各個(gè)面都有交點(diǎn),則這個(gè)截面的周長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B、C、D是球面上的四點(diǎn),AB、AC、AD兩兩互相垂直,且AB=3,AC=4,AD=
11
,則球的表面積為( 。
A、36πB、64π
C、100πD、144π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了分析某次考試數(shù)學(xué)成績情況,用簡單隨機(jī)抽樣從某班中抽取25名學(xué)生的成績(百分制)作為樣本,得到頻率分布表如下:
分?jǐn)?shù)[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)239a1
頻率0.080.120.36b0.04
(Ⅰ)求樣本頻率分布表中a,b的值,并根據(jù)上述頻率分布表,在下表中作出樣本頻率分布直方圖;
(Ⅱ)計(jì)算這25名學(xué)生的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅲ)從成績在[50,70)的學(xué)生中任選2人,求至少有1人的成績在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程是y=
3
x,它的一個(gè)焦點(diǎn)在拋物線y2=24x的準(zhǔn)線上,則雙曲線的方程為( 。
A、x2-
y2
3
=1
B、
x2
3
-
y2
9
=1
C、
x2
4
-
y2
12
=1
D、
x2
9
-
y2
27
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

銳角△ABC中,角A,B,C所對的邊分別為a,b,c,若C=2A,則
c
a
的取值范圍是( 。
A、(
2
,
3
B、(1,
3
C、(
2
,2)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是△ABC所在平面內(nèi)一點(diǎn),
PB
+
PC
+2
PA
=0
,現(xiàn)將一粒黃豆隨機(jī)撒在△ABC內(nèi),則黃豆落在△PBC內(nèi)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間四邊形ABCD中,若AB=BC=CD=DA=BD=1,則AC的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(k-2)x2+(k-1)x+3是偶函數(shù),則f(x)的遞增區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊答案