5.在三棱錐P-ABC中,PA,PB,PC兩兩互相垂直,PA=3,PB=5,PC=$\sqrt{2}$,若三棱錐P-ABC的頂點(diǎn)都在球O的球面上,則球O的體積等于( 。
A.36πB.25πC.16πD.4$\sqrt{3}$π

分析 三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩互相垂直,它的外接球就是它擴(kuò)展為長(zhǎng)方體的外接球,求出長(zhǎng)方體的對(duì)角線(xiàn)的長(zhǎng),就是球的直徑,然后求球的體積.

解答 解:三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩互相垂直,
它的外接球就是它擴(kuò)展為長(zhǎng)方體的外接球,
求出長(zhǎng)方體的對(duì)角線(xiàn)的長(zhǎng):$\sqrt{9+25+2}$=6
所以球的直徑是6,半徑為3,
所以球的體積:$\frac{4}{3}$π×33=36π
故選:A.

點(diǎn)評(píng) 本題考查球的體積,幾何體的外接球,考查空間想象能力,計(jì)算能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=x3+ax2-a2x+2
(1)當(dāng)a=1,求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1)處的切線(xiàn)方程
(2)當(dāng)a≠0,求函數(shù)f(x)的單調(diào)區(qū)間
(3)不等式2x1nx≤f′(x)+a2+1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=ae2|x-b|(a>0,b∈R),當(dāng)a=1時(shí),對(duì)任意的x∈R,f(x)≥x,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{e^x}{x}$的定義域?yàn)椋?,+∞).
(Ⅰ)求函數(shù)f(x)在[m,m+1](m>0)上的最小值;
(Ⅱ)對(duì)任意x∈(0,+∞),不等式xf(x)>-x2+λx-1恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.log225•log32$\sqrt{2}$•log59的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在地面距離塔基分別為100m,200m,300m的A、B、C處測(cè)得塔頂?shù)难鼋欠謩e為α,β,γ,且α+β+γ=90°,則塔高為100m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,網(wǎng)格紙上小正方形邊長(zhǎng)為1,粗線(xiàn)是一個(gè)棱錐的三視圖,則此棱錐的體積為( 。
A.$\frac{8}{3}$B.$\frac{4}{3}$C.4$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知圓C:x2+y2-2x-2ay+a2-24=0(a∈R)的圓心在直線(xiàn)2x-y=0上.
(1)求實(shí)數(shù)a的值;
(2)求圓C與直線(xiàn)l:(2m+1)x+(m+1)y-7m-4=0(m∈R)相交弦長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在復(fù)平面內(nèi),復(fù)數(shù)z與$\frac{5}{i-2}$的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱(chēng),則z=( 。
A.2+iB.2-iC.-2+iD.-2-i

查看答案和解析>>

同步練習(xí)冊(cè)答案