13.7個人排成一隊參觀某項目,其中ABC三人進入展廳的次序必須是先B再A后C,則不同的列隊方式有多少種( 。
A.120B.240C.420D.840

分析 根據(jù)題意,用間接法(倍分法)分析:先計算7人排成一列的排法數(shù)目,由于ABC三人順序一定,則不同的列隊方式有$\frac{{A}_{7}^{7}}{{A}_{3}^{3}}$種,計算即可得答案.

解答 解:根據(jù)題意,先將7人排成一列,有A77種排法,
其中ABC三人進入展廳的次序必須是先B再A后C,即ABC三人順序一定,
則不同的列隊方式有$\frac{{A}_{7}^{7}}{{A}_{3}^{3}}$=840種;
故選:D.

點評 本題考查排列、組合的應(yīng)用,注意ABC三人順序一定,可以用間接法分析.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知x>0,y>0,x+2y=1,若不等式$\frac{2}{x}$$+\frac{1}{y}$>m2+2m成立,則實數(shù)m的取值范圍是(  )
A.m≥4或m≤-2B.m≥2或m≤-4C.-2<m<4D.-4<m<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x3+ax2+1(a∈R).
(1)當(dāng)a>0時,求函數(shù)f(x)的極值;
(2)若f(x)在區(qū)間[1,2]上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知拋物線方程是:y2=20x,則拋物線的通徑的長為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.曲線C:y=ex同曲線C在x=0處的切線及直線x=2所圍成的封閉圖形的面積為( 。
A.e+1B.e-1C.e2-1D.e2-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若$sin(α+β)=\frac{1}{5}$,$sin(α-β)=\frac{3}{5}$,則$\frac{tanα}{tanβ}$=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某地區(qū)數(shù)學(xué)考試的成績X服從正態(tài)分布X~N(μ,σ2),正態(tài)分布密度函數(shù)為$f(x)=\frac{1}{{\sqrt{2π}σ}}{e^{-\frac{{{{(x-σ)}^2}}}{{2{x^2}}}}}$,x∈(-∞,+∞),其密度曲線如圖所示,則成績X位于區(qū)間(86,94]的概率是0.0215.(結(jié)果保留3為有效數(shù)字)本題用到參考數(shù)據(jù)如下:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知F1,F(xiàn)2分別是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點,A,B分別是橢圓C的左、右頂點,$\overrightarrow{A{F_2}}=(5+2\sqrt{6})\overrightarrow{{F_2}B}$,且OF2(其中O為坐標(biāo)原點)的中點坐標(biāo)為$(\frac{{\sqrt{30}}}{6},0)$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知動直線y=k(x+1)與橢圓C相交于P,Q兩點,已知點$M(-\frac{7}{3},0)$,求證:$\overrightarrow{MP}•\overrightarrow{MQ}$是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an},{bn}的通項公式分別是an=(-1)n+2016•a,bn=2+$\frac{{{{({-1})}^{n+2017}}}}{n}$,若an<bn,對任意n∈N+恒成立,則實數(shù)a的取值范圍是$[{-2,\frac{3}{2}})$.

查看答案和解析>>

同步練習(xí)冊答案