5.某地區(qū)數(shù)學(xué)考試的成績(jī)X服從正態(tài)分布X~N(μ,σ2),正態(tài)分布密度函數(shù)為$f(x)=\frac{1}{{\sqrt{2π}σ}}{e^{-\frac{{{{(x-σ)}^2}}}{{2{x^2}}}}}$,x∈(-∞,+∞),其密度曲線如圖所示,則成績(jī)X位于區(qū)間(86,94]的概率是0.0215.(結(jié)果保留3為有效數(shù)字)本題用到參考數(shù)據(jù)如下:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.

分析 利用圖象得出μ和σ,利用參考數(shù)據(jù)計(jì)算P(54<X<86),P(46<X<94),從而得出結(jié)論.

解答 解:由正態(tài)密度圖象可知μ=70,σ=8,
∴P(μ-2σ<X<μ+2σ)=P(54<X<86)=0.9544,
P(μ-3σ<X<μ+3σ)=P(46<X<94)=0.9974,
∴P(86<X≤94)=$\frac{1}{2}$(0.9974-0.9544)=0.0215.
故答案為:0.0215.

點(diǎn)評(píng) 本題考查了正態(tài)分布的對(duì)稱性特點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知正四棱錐的底面邊長(zhǎng)是2,側(cè)面積為12,則該正四棱錐的體積為$\frac{8\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)向量$\overrightarrow{a}$=(sinx,$\sqrt{3}$cosx),$\overrightarrow$=(-1,1),$\overrightarrow{c}$=(1,1),其中x∈(0,π].
(1)若($\overrightarrow{a}$+$\overrightarrow$)∥$\overrightarrow{c}$,求實(shí)數(shù)x的值;
(2)若$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$,求函數(shù)sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.7個(gè)人排成一隊(duì)參觀某項(xiàng)目,其中ABC三人進(jìn)入展廳的次序必須是先B再A后C,則不同的列隊(duì)方式有多少種( 。
A.120B.240C.420D.840

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{3}{2}{n^2}+\frac{3}{2}$n.
(1)求{an}的通項(xiàng)公式;    
(2)求$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=2$\sqrt{3}$|$\overrightarrow{a}$|,且($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=0,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$為( 。
A.0B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知定義在R上的函數(shù)f(x)=ax(0<a<1),且f(1)+f(-1)=$\frac{10}{3}$,若數(shù)列{f(x)}(n∈N*)的前n項(xiàng)和等于$\frac{40}{81}$.則n=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐P-ABC中,AC=BC=$\sqrt{2}$,∠ACB=90°,AP=BP=AB,PC⊥AC.
(1)求二面角B-AP-C的正切值;
2)求點(diǎn)C到平面APB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知x>0,y>0,x+2y+2xy=8,則x+2y的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案