【題目】已知橢圓: 的左焦點和上頂點在直線上, 為橢圓上位于軸上方的一點且軸, 為橢圓上不同于的兩點,且.
(1)求橢圓的標準方程;
(2)設直線與軸交于點,求實數(shù)的取值范圍.
【答案】(1)(2)
【解析】試題分析:(1)根據(jù)題意及即可求出橢圓方程;(2)根據(jù)題意AN,AM斜率互為相反數(shù),設出AM直線方程,聯(lián)立橢圓方程求出M點橫坐標,用換,得N的橫坐標,得出,設MN直線方程,聯(lián)立得一元二次方程,有解即可求出的取值范圍.
試題解析:(1)依題意得橢圓的左焦點為,上頂點為,
故,所以,
所以橢圓的標準方程為.
(2)設直線的斜率為,因為,所以關(guān)于直線對稱,
所以直線的斜率為,
易知,所以直線的方程是,
設,
聯(lián)立,消去,得,
所以,
將上式中的換成,得,
所以,
所以直線的方程是,
代入橢圓方程,得,
所以,解得,
又因為在點下方,所以,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第n年需要付出設備的維修和工人工資等費用an的信息如圖.
(1)求an;
(2)引進這種設備后,第幾年后該公司開始獲利;
(3)這種設備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ae﹣x , 若f′(x)≥2 恒成立,則a的取值范圍為( )
A.[3,+∞)
B.(0,3]
C.[﹣3,0)
D.(﹣∞,﹣3]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過定點P(2,0)的直線l與曲線y= 相交于A,B兩點,O為坐標原點,當△AOB的面積取最大時,直線的傾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正確答案的序號是 . (寫出所有正確答案的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設O為坐標原點,曲線x2+y2+2x﹣6y+1=0上有兩點P、Q,滿足關(guān)于直線x+my+4=0對稱,又滿足 =0.
(1)求m的值;
(2)求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知線段AB長度為a(a為定值),在其上任意選取一點M,在AB的同一側(cè)分別以AM、MB為底作正方形AMCD、MBEF,⊙P和⊙Q是這兩個正方形的外接圓,它們交于點M、N.試以A為坐標原點,建立適當?shù)钠矫嬷苯亲鴺讼担?
(1)證明:不論點M如何選取,直線MN都通過一定點S;
(2)當 時,過A作⊙Q的割線,交⊙Q于G、H兩點,在線段GH上取一點K,使 = 求點K的軌跡.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com