【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第n年需要付出設備的維修和工人工資等費用an的信息如圖.
(1)求an;
(2)引進這種設備后,第幾年后該公司開始獲利;
(3)這種設備使用多少年,該公司的年平均獲利最大?
【答案】
(1)解:如圖,a1=2,a2=4,
∴每年的費用是以2為首項,2為公差的等差數列,
∴an=a1+2(n﹣1)=2n
(2)解:設純收入與年數n的關系為f(n),
則f(n)=21n﹣[2n+ ×2]﹣25=20n﹣n2﹣25,
由f(n)>0得n2﹣20n+25<0,
解得10﹣5 <n<10+5 ,
因為n∈N,所以n=2,3,4,…18.
即從第2年該公司開始獲利
(3)解:年平均收入為 =20﹣(n+ )≤20﹣2×5=10,
當且僅當n=5時,年平均收益最大.
所以這種設備使用5年,該公司的年平均獲利最大.
【解析】(1)由題意知,每年的費用是以2為首項,2為公差的等差數列,求得:an=a1+2(n﹣1)=2n.(2)設純收入與年數n的關系為f(n),則f(n)=20n﹣n2﹣25,由此能求出引進這種設備后第2年該公司開始獲利.(3)年平均收入為 =20﹣(n+ )≤20﹣2×5=10,由此能求出這種設備使用5年,該公司的年平均獲利最大.
【考點精析】解答此題的關鍵在于理解基本不等式的相關知識,掌握基本不等式:,(當且僅當時取到等號);變形公式:,以及對數列的前n項和的理解,了解數列{an}的前n項和sn與通項an的關系.
科目:高中數學 來源: 題型:
【題目】某城市隨機抽取一年內100 天的空氣質量指數(AQI)的監(jiān)測數據,結果統(tǒng)計如表:
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,300] | >300 |
空氣質量 | 優(yōu) | 良 | 輕度污染 | 輕度污染 | 中度污染 | 重度污染 |
天數 | 6 | 14 | 18 | 27 | 20 | 15 |
(1)若本次抽取的樣本數據有30 天是在供暖季,其中有8 天為嚴重污染.根據提
供的統(tǒng)計數據,完成下面的2×2 列聯(lián)表,并判斷是否有95%的把握認為“該城市本年的
空氣嚴重污染與供暖有關”?
非重度污染 | 嚴重污染 | 合計 | |
供暖季 | |||
非供暖季 | |||
合計 | 100 |
(2)已知某企業(yè)每天的經濟損失y(單位:元)與空氣質量指數x 的關系式為y= 試估計該企業(yè)一個月(按30 天計算)的經濟損失的數學期望.
參考公式:K2=
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,PB⊥面ABCD,BA=BD= ,AD=2,E,F(xiàn)分別是棱AD,PC的中點.
(1)證明:EF∥平面PAB;
(2)若二面角P﹣AD﹣B為60°,求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,且a2=b(b+c).
(1)求證:∠A=2∠B;
(2)若a= b,判斷△ABC的形狀.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn , 且a3=5,S15=225.數列{bn}是等比數列,b3=a2+a3 , b2b5=128(其中n=1,2,3,…). (Ⅰ)求數列{an}和{bn}的通項公式;
(Ⅱ)記cn=anbn , 求數列cn前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E的焦點在x軸上,長軸長為4,離心率為 . (Ⅰ)求橢圓E的標準方程;
(Ⅱ)已知點A(0,1)和直線l:y=x+m,線段AB是橢圓E的一條弦且直線l垂直平分弦AB,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓: 的左焦點和上頂點在直線上, 為橢圓上位于軸上方的一點且軸, 為橢圓上不同于的兩點,且.
(1)求橢圓的標準方程;
(2)設直線與軸交于點,求實數的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com