【題目】已知數(shù)列的前項和滿足.
(1)求數(shù)列的通項公式;
(2)記,是數(shù)列的前項和,若對任意的,不等式都成立,求實數(shù)的取值范圍;
(3)記,是否存在互不相等的正整數(shù),,,使,,成等差數(shù)列,且,,成等比數(shù)列?如果存在,求出所有符合條件的,,;如果不存在,請說明理由.
【答案】(1); (2); (3)不存在.
【解析】
(1)當(dāng)時,,與題目中所給等式相減得:,即,又時,,解得:,所以.
(2)化簡得,由裂項相消得,,再根據(jù)不等式都成立,化簡得:,求出的最大值即可.
(3)假設(shè)存在互不相等的正整數(shù),,滿足條件,則有.證明其成立的條件與,,互不相等矛盾即可.
(1)因為數(shù)列的前項和滿足,
所以當(dāng)時,,
兩式相減得:,即,
又時,,解得:,
所以數(shù)列是以3為首項,3為公比的等比數(shù)列,從而.
(2)由(1)知:,
所以,
,
對任意的,不等式都成立,即,
化簡得:,令,
因為,
故單調(diào)遞減,
所以,故,
所以,實數(shù)的取值范圍是.
(3)由(1)知:,
假設(shè)存在互不相等的正整數(shù),,滿足條件,
則有.
由與得,
即,
因為,所以.
因為,當(dāng)且僅當(dāng)時等號成立,
這與,,互不相等矛盾.
所以不存在互不相等的正整數(shù),,滿足條件.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將數(shù)列的前項分成兩部分,且兩部分的項數(shù)分別是,若兩部分和相等,則稱數(shù)列的前項的和能夠進(jìn)行等和分割.
(1)若,試寫出數(shù)列的前項和所有等和分割;
(2)求證:等差數(shù)列的前項的和能夠進(jìn)行等和分割;
(3)若數(shù)列的通項公式為:,且數(shù)列的前項的和能夠進(jìn)行等和分割,求所有滿足條件的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求C的普通方程和的直角坐標(biāo)方程;
(2)求C上的點到距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,,求的值域;
(2)當(dāng)時,求的最小值;
(3)是否存在實數(shù)、,同時滿足下列條件:① ;② 當(dāng)的定義域為時,其值域為.若存在,求出、的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 m、n 是兩條不同的直線,α、β、γ是三個不同的平面,下列命題中正確的是( )
A.若α⊥β , β⊥γ ,則α∥γ
B.若 , , m∥n ,則α∥β
C.若 m、n 是異面直線, , m∥β , , n∥α ,則α∥β
D.平面α內(nèi)有不共線的三點到平面 β的距離相等,則α∥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列六個命題:
(1)若,則函數(shù)的圖像關(guān)于直線對稱.
(2)與的圖像關(guān)于直線對稱.
(3)的反函數(shù)與是相同的函數(shù).
(4)無最大值也無最小值.
(5)的最小正周期為.
(6)有對稱軸兩條,對稱中心有三個.
則正確命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上海市松江區(qū)天馬山上的“護(hù)珠塔”因其傾斜度超過意大利的比薩斜塔而號稱“世界第一斜塔”.興趣小組同學(xué)實施如下方案來測量塔的傾斜度和塔高:如圖,記O點為塔基、P點為塔尖、點P在地面上的射影為點H.在塔身OP射影所在直線上選點A,使仰角∠HAP=45°,過O點與OA成120°的地面上選B點,使仰角∠HPB=45°(點A、B、O都在同一水平面上),此時測得∠OAB=27°,A與B之間距離為33.6米.試求:
(1)塔高(即線段PH的長,精確到0.1米);
(2)塔身的傾斜度(即PO與PH的夾角,精確到0.1°).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府為改善居民的住房條件,集中建設(shè)一批經(jīng)適樓房.用了1400萬元購買了一塊空地,規(guī)劃建設(shè)8幢樓,要求每幢樓的面積和層數(shù)等都一致,已知該經(jīng)適房每幢樓每層建筑面積均為250平方米,第一層建筑費用是每平方米3000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加80元.
(1)若該經(jīng)適樓房每幢樓共層,總開發(fā)費用為萬元,求函數(shù)的表達(dá)式(總開發(fā)費用=總建筑費用+購地費用);
(2)要使該批經(jīng)適房的每平方米的平均開發(fā)費用最低,每幢樓應(yīng)建多少層?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com