若Sn為等差數(shù)列{an}的前n項(xiàng)和,S13=-104,則a7的值為
 
考點(diǎn):等差數(shù)列的性質(zhì)
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等差數(shù)列的性質(zhì)、前n項(xiàng)和公式化簡(jiǎn)S13=-104,即可求出a7的值.
解答: 解:由等差數(shù)列的性質(zhì)得,
S13=
13(a1+a13)
2
=
13×2a7
2
=13a7=-104,
所以a7=-8,
故答案為:-8.
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)、前n項(xiàng)和公式的靈活應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)已知函數(shù)f(x)=2sin
π
6
xcos
π
6
x,過(guò)兩點(diǎn)A(t,f(t)),B(t+1,f(t+1)) 的直線的斜率記為g(t)
(1)求g(t)的解析式及其單增區(qū)間.
(2)若g(t0)=
4
5
,且t0∈(-
1
2
,1),求g(t0+1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,若a=
2
3
3
,b=2,B=
π
3
,則A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R).若x=-1為函數(shù)f(x)ex的一個(gè)極值點(diǎn),則如圖四個(gè)圖象可以為y=f(x)的圖象序號(hào)是
 
(寫(xiě)出所有滿足題目條件的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)平行四邊形的三個(gè)頂點(diǎn)的坐標(biāo)為(-1,2),(3,4),(4,-2),點(diǎn)(x,y)在這個(gè)平行四邊形的內(nèi)部或邊上,則z=2x-5y的最大值是(  )
A、16B、18C、20D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x+y-6≤0
x-3y+2≤0
3x-y-2≥0
 則z=x-2y的最小值為( 。
A、-10B、-6C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知AB=
6
,cosC=
3
3
,A=2C,則BC的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2a>2b>1,則下列不等關(guān)系式中正確的是( 。
A、sina>sinb
B、log2a<log2b
C、(
1
3
a>(
1
3
b
D、(
1
3
a<(
1
3
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱柱的底面邊長(zhǎng)是4厘米,過(guò)BC的一個(gè)平面與底面成30°的二面角,交側(cè)棱AA′于D,求AD的長(zhǎng)和截面△BCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案