11.如圖,在底面為菱形的四棱錐P-ABCD中,∠BAD=120°,PA⊥底面ABCD,且PA=AB=6,E是棱PD的三等分點(PE>ED),F(xiàn)是棱PC的中點,底面對角線AC與BD相交于點O.
(Ⅰ)求證:BD⊥PC;
(Ⅱ)求三棱錐A-CEF的體積.

分析 (I)由PA⊥底面ABCD,可得PA⊥BD,由菱形ABCD可得BD⊥AC,即可證明BD⊥平面PAC;
(II)設點E到平面PAC的距離為d,由E是棱PD的三等分點(PE>ED),BD⊥平面PAC,可得d=$\frac{2}{3}OD$,利用三棱錐A-CEF的體積V=VE-AFC=$\frac{1}{3}×d×{S}_{△AFC}$,即可得出.

解答 (I)證明:∵PA⊥底面ABCD,∴PA⊥BD,
由菱形ABCD可得BD⊥AC,PA∩AC=A.
∴BD⊥平面PAC,
∴BD⊥PC;
(II)解:菱形ABCD中,∠BAD=120°,AB=6.
則OA=3,OD=$3\sqrt{3}$.
設點E到平面PAC的距離為d,
∵E是棱PD的三等分點(PE>ED),BD⊥平面PAC,
∴d=$\frac{2}{3}OD$=2$\sqrt{3}$,
∵PA⊥底面ABCD,
∴PA⊥AC.
∴S△PAC=$\frac{1}{2}$×62=18.
∴S△AFC=$\frac{1}{2}{S}_{△PAC}$=9.
∴三棱錐A-CEF的體積V=VE-AFC=$\frac{1}{3}×d×{S}_{△AFC}$=$\frac{1}{3}×2\sqrt{3}×9$=6$\sqrt{3}$.

點評 本題考查了線面垂直的判定與性質定理、三棱錐的體積計算公式、菱形的性質、等邊三角形與直角三角形的邊角關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=asinx+bcosx(a,b≠0)的最大值時2,且f($\frac{π}{6}$)=$\sqrt{3}$,求f($\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在直三棱柱ABC-A1B1C1中,D、E分別是棱A1B1、CC1的點,且DC1⊥A1B1,A1D=$\frac{2}{3}$A1B1,CE=$\frac{1}{3}$CC1,求證:
(1)直線DC1∥平面A1BE;
(2)平面A1BE⊥平面A1ABB1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知四棱錐P-ABCD中,底面ABCD是菱形,M是PC的中點,∠PDC=90°,∠PDA=90°,∠DAB=60°
(Ⅰ)證明:PA∥平面BDM;
(Ⅱ)若PD=2,且二面角C-DM-B的平面角的正切值等于$\sqrt{6}$,求三棱錐M-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在直三棱柱ABC-A1B1C1中,D、E分別為CC1、AD的中點,F(xiàn)為BB1上的點,且B1F=3BF.
(1)證明:EF∥平面ABC;
(2)若AC=2$\sqrt{2}$,BC=$\sqrt{2}$,∠ACB=$\frac{π}{3}$,且二面角D-AB-C的正切值為$\sqrt{2}$,求三棱錐F-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,三棱柱ABC-A1B1C1中,BCC1B1是邊長為1的正方形,A在平面BCC1B1的射影恰為BB1的中點D,E為B1C1的中點,AD=$\frac{1}{2}$
(Ⅰ)求證:BE⊥AC;
(Ⅱ)求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S. 
①當0<CQ<$\frac{1}{2}$時,S為四邊形
②截面在底面上投影面積恒為定值$\frac{3}{4}$
③存在某個位置,使得截面S與平面A1BD垂直
④當CQ=$\frac{3}{4}$時,S與C1D1的交點R滿足C1R=$\frac{1}{3}$
其中正確命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠DAB=45°,PD⊥平面ABCD,PD=AD=1,點E為AB上一點,且$\frac{AE}{AB}$=k,點F為PD中點.
(Ⅰ)若k=$\frac{1}{2}$,求證:直線AF∥平面PEC;
(Ⅱ)是否存在一個常數(shù)k,使得平面PED⊥平面PAB,若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若(x+$\sqrt{x}$)n的展開式中第三項系數(shù)為36,則自然數(shù)n的值是9.

查看答案和解析>>

同步練習冊答案