分析 (Ⅰ)若k=$\frac{1}{2}$,根據(jù)線面平行的判定定理即可證明直線AF∥平面PEC;
(Ⅱ)根據(jù)面面垂直的條件,進(jìn)行求解即可.
解答 解:(Ⅰ)證明:作FM∥CD交PC于M.
∵點(diǎn)F為PD中點(diǎn),
∴FM=$\frac{1}{2}$CD.
∵k=$\frac{1}{2}$,
∴AE=$\frac{1}{2}$AB=FM,
又∵FM∥CD∥AB,
∴AEMF為平行四邊形,
∴AF∥EM,
∵AF?平面PEC,EM?平面PEC,
∴直線AF∥平面PEC.…(6分)
(Ⅱ)存在常數(shù)k=$\frac{\sqrt{2}}{2}$,使得平面PED⊥平面PAB.…(8分)
∵$\frac{AE}{AB}=k$,AB=1,k=$\frac{\sqrt{2}}{2}$,
∴AE=$\frac{\sqrt{2}}{2}$,
又∵∠DAB=45°,∴AB⊥DE.
又∵PD⊥平面ABCD,∴PD⊥AB.
又∵PD∩DE=D,∴AB⊥平面PDE,
∵AB?平面PAB,
∴平面PED⊥平面PAB.…(12分)
點(diǎn)評(píng) 本題主要考查空間直線和平面平行的判定依據(jù)面面垂直的應(yīng)用,要求熟練掌握相應(yīng)的判定定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{2}$,1) | B. | [$\frac{\sqrt{2}}{2}$,1) | C. | [$\frac{\sqrt{3}}{2}$,1) | D. | (1,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{3}{4}$] | B. | [0,$\frac{3}{4}$] | C. | [0,1) | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b=1 | B. | b=0 | C. | b>1 | D. | b>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{5}{2}$,-1) | B. | (-$\frac{5}{2}$,-$\frac{9}{4}$) | C. | (-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1) | D. | (-$\frac{9}{4}$,-1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com