19.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(9,x),$\overrightarrow{c}$=(4,y),且$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow{a}$⊥$\overrightarrow{c}$.
(1)求$\overrightarrow$和$\overrightarrow{c}$;
(2)求2$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow{c}$的夾角θ的余弦值.

分析 (1)運用向量共線和垂直的條件,解方程可得x,y,即可得到所求向量;
(2)求得2$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow{c}$的坐標(biāo),運用向量的模的公式和向量數(shù)量積的坐標(biāo)表示,計算即可得到所求值.

解答 解(1)因為向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(9,x),$\overrightarrow{c}$=(4,y),且$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow{a}$⊥$\overrightarrow{c}$.
所以3x=4×9,12+4y=0,
解得x=12,y=-3,
所以$\overrightarrow$=(9,12),$\overrightarrow{c}$=(4,-3),
(2)2$\overrightarrow{a}$-$\overrightarrow$=(-3,-4),$\overrightarrow{a}$+$\overrightarrow{c}$=(7,1),
則cosθ=$\frac{(2\overrightarrow{a}-\overrightarrow)•(\overrightarrow{a}+\overrightarrow{c})}{|2\overrightarrow{a}-\overrightarrow|•|\overrightarrow{a}+\overrightarrow{c}|}$=$\frac{-3×7-4}{\sqrt{9+16}•\sqrt{49+1}}$=-$\frac{\sqrt{2}}{2}$.

點評 本題考查平面向量共線和向量垂直的條件,以及向量夾角公式的運用,考查方程思想和運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓C經(jīng)過A(-2,1),B(5,0)兩點,且圓心C在直線y=2x上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)動直線l:(m+2)x+(2m+1)y-7m-8=0與圓C相交于P,Q兩點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線${x^2}=-4\sqrt{5}y$的焦點與雙曲線$\frac{x^2}{a}+\frac{y^2}{4}=1(a∈R)$的一個焦點重合,則該雙曲線的漸近線方程為( 。
A.y=±2xB.y=±4xC.$y=±\frac{1}{4}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.動圓M過點(3,2)且與直線y=1相切,則動圓圓心M的軌跡方程為x2-6x-2y+12=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若復(fù)數(shù)z滿足(1+2i)z=|2+i|,則復(fù)數(shù)z的虛部為( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$iC.-$\frac{2\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.對于函數(shù)f(x)=x圖象上的任一點M,在函數(shù)g(x)=lnx上都存在點N(x0,y0),使$\overrightarrow{OM}•\overrightarrow{ON}=0(O$是坐標(biāo)原點),則x0必然在下面哪個區(qū)間內(nèi)?( 。
A.$(\frac{1}{e^3},\frac{1}{e^2})$B.$(\frac{1}{e^2},\frac{1}{e})$C.$(\frac{1}{e},\frac{1}{{\sqrt{e}}})$D.$(\frac{1}{{\sqrt{e}}},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知全集U=R,集合A={x|x2>4},則∁UA=( 。
A.(-∞,-2)∪(2,+∞)B.[-2,2]C.(-∞,-4)∪(4,+∞)D.[-4,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.2001年至2013年北京市電影放映場次的情況如圖所示.下列函數(shù)模型中,最不合適近似描述這13年間電影放映場次逐年變化規(guī)律的是( 。
A.y=ax2+bx+cB.y=aex+bC.y=aax+bD.y=alnx+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=ex-(x+1)2(e為2.71828…),則f(x)的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案