分析 (I)將曲線方程化成直角坐標(biāo)方程,計(jì)算圓心到直線的距離與圓的半徑比較大小得出結(jié)論;
(II)由題意可知直線與圓相離,且圓心到直線l的距離為2$\sqrt{2}$,故到直線l的距離等于2$\sqrt{2}$的點(diǎn)在過(guò)圓心且與直線l平行的直線上,求出此直線的參數(shù)方程代入圓的方程求出該點(diǎn)對(duì)應(yīng)的參數(shù),得出該點(diǎn)的坐標(biāo).
解答 解:(I)圓C的普通方程為(x-1)2+(y-1)2=2,
∴圓心坐標(biāo)為(1,1),半徑r=$\sqrt{2}$.
m=3時(shí),直線l的直角坐標(biāo)方程為x+y-3=0.
∴圓心C到直線l的距離d=$\frac{|1+1-3|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$<r.
∴直線l與圓C相交.
(II)直線l的普通方程為x+y-m=0.
∵C上有且只有一點(diǎn)到直線l的距離等于$\sqrt{2}$,
∴直線l與圓C相離,且圓心到直線的距離為$\sqrt{2}+\sqrt{2}=2\sqrt{2}$.
∴圓C上到直線l的距離等于2$\sqrt{2}$的點(diǎn)在過(guò)圓心C(1,1)且與直線l平行的直線上.
∴過(guò)圓心C(1,1)且與直線l平行的直線的參數(shù)方程為:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
將:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))代入圓C的普通方程得t2=2,
∴t1=$\sqrt{2}$,t2=-$\sqrt{2}$.
當(dāng)t=$\sqrt{2}$時(shí),$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,當(dāng)t=-$\sqrt{2}$時(shí),$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$.
∴C上到直線l距離為2$\sqrt{2}$的點(diǎn)的坐標(biāo)為(0,2),(2,0).
點(diǎn)評(píng) 本題考查了參數(shù)方程,極坐標(biāo)方程與普通方程的轉(zhuǎn)化,直線與圓的位置關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | -$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | -8 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com