12.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}\\{x+y≤5}\\{2x-y≤2}\end{array}\right.$若z=y+mx有最大值12,則實(shí)數(shù)m的取值為( 。
A.-4B.-8C.8D.4

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,分類(lèi)討論得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤5}\\{2x-y≤2}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{2x-y=2}\\{x+y=5}\end{array}\right.$,解得A($\frac{7}{3}$,$\frac{8}{3}$),
聯(lián)立$\left\{\begin{array}{l}{x=1}\\{x+y=5}\end{array}\right.$,解得B(1,4),
化目標(biāo)函數(shù)z=mx+y為y=-mx+z,
當(dāng)-m≤-1,即m≥1時(shí),直線過(guò)A時(shí)在y軸上的截距最大,z有最大值為$\frac{7}{3}$m+$\frac{8}{3}$=12,解得m=4;
當(dāng)2<-m,即m<-2時(shí),直線過(guò)B時(shí)在y軸上的截距最大,z有最大值為m+4=12,解得m=8(舍).
∴m=4.
故選:D.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,考查分類(lèi)討論的數(shù)學(xué)思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x={t}^{2}+\frac{1}{{t}^{2}}-3}\\{y=2(t-\frac{1}{t})}\end{array}\right.$(t為參數(shù))
(1)將曲線C的參數(shù)方程化為普通方程;
(2)以原點(diǎn)為極點(diǎn),x軸正方向?yàn)闃O軸,建立極坐標(biāo)系,寫(xiě)出曲線C的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系中,圓C的方程為$\left\{\begin{array}{l}{x=1+\sqrt{2}cosθ}\\{y=1+\sqrt{2}sinθ}\end{array}\right.$ (θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線l的極坐標(biāo)方程為ρcosθ+ρsinθ=m(m∈R).
(I)當(dāng)m=3時(shí),判斷直線l與C的位置關(guān)系;
(Ⅱ)當(dāng)C上有且只有一點(diǎn)到直線l的距離等于$\sqrt{2}$時(shí),求C上到直線l距離為2$\sqrt{2}$的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.2016年元旦來(lái)臨之際,某網(wǎng)站舉行了一次促銷(xiāo)答題活動(dòng),若在網(wǎng)站給出一道多項(xiàng)選擇題,答題者選出所有的正確選項(xiàng)的概率為m,此時(shí)送出50元優(yōu)惠券,選出一部分(沒(méi)有全部選出,但也沒(méi)有選出錯(cuò)誤項(xiàng))的概率為n,此時(shí)送出20元優(yōu)惠券,選出錯(cuò)誤選項(xiàng)(即包含錯(cuò)誤選項(xiàng))的概率為0.2,此時(shí)不送優(yōu)惠券,則$\frac{1}{m}$+$\frac{9}{n}$的最小值為3$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若acosA=bsinA,且B>$\frac{π}{2}$,則sinA+sinC的最大值是( 。
A.$\sqrt{2}$B.$\frac{9}{8}$C.1D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.兩條直線l1:x-3y+1=0與直線l2:x+2y-5=0的夾角是( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.arctan$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖所示,在三角形ABC中,AD⊥BC,AD=1,BC=4,點(diǎn)E為AC的中點(diǎn),$\overrightarrow{DC}•\overrightarrow{BE}$=$\frac{15}{2}$,則AB的長(zhǎng)度為( 。
A.2B.$\frac{3}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x)=e${\;}^{\frac{x}{2}}$-$\frac{x}{4}$,其中e為自然對(duì)數(shù)的底數(shù).
(1)設(shè)g(x)=(x+1)f′(x)(其中f′(x)為f(x)的導(dǎo)函數(shù)),判斷g(x)在(-1,+∞)上的單調(diào)性;
(2)若F(x)=ln(x+1)-af(x)+4無(wú)零點(diǎn),試確定正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足2Sn+an=n2+2n+2,n∈N*,數(shù)列{bn}滿足bn=an-n.
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{nbn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案