分析 由已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,($\overrightarrow{a}$+$\overrightarrow$)(2$\overrightarrow{a}$-$\overrightarrow$)=-1,求出$\overrightarrow{a}$,$\overrightarrow$的數(shù)量積,利用數(shù)量積公式,求出它們的夾角.
解答 解:因為|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,($\overrightarrow{a}$+$\overrightarrow$)(2$\overrightarrow{a}$-$\overrightarrow$)=-1,
所以$2{\overrightarrow{a}}^{2}-{\overrightarrow}^{2}+\overrightarrow{a}•\overrightarrow=-1$,所以$\overrightarrow{a}•\overrightarrow$=-1,
所以向量$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$-\frac{\sqrt{2}}{2}$,
所以向量$\overrightarrow{a}$與$\overrightarrow$的夾角為135°;
故答案為:135°.
點評 本題考查了平面向量的運算;利用平面向量的數(shù)量積求向量的夾角;屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-$\frac{1}{x}$ | B. | y=3-x-3x | C. | y=x|x| | D. | y=x3-x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | -$\frac{2\sqrt{3}}{2}$ | D. | $\frac{3\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com