下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是(  )
A、y=x3
B、y=2x
C、y=ln|x|
D、y=
1
x 2
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)基本初等函數(shù)的單調(diào)性奇偶性,逐一分析答案四個(gè)函數(shù)在(0,+∞)上的單調(diào)性和奇偶性,逐一比照后可得答案.
解答: 解:A、y=x3在(0,+∞)上單調(diào)遞增,但為奇函數(shù),則A不符合;
B、函數(shù)y=2x為奇函數(shù),則B不符合;
C、函數(shù)y=ln|x|定義域是{x|x≠0},是偶函數(shù),且在(0,+∞)上單調(diào)遞增,則C符合;
D、函數(shù)y=
1
x2
定義域是{x|x≠0},是偶函數(shù),且在(0,+∞)上單調(diào)遞減,則D不符合;
故選:C.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性與單調(diào)性的綜合,熟練掌握各種基本初等函數(shù)的單調(diào)性和奇偶性是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,a2013=8a2010,則q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R+
1
x
+
1
y
=1,則x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知AO為平面α的一條斜線,O為斜足,OB為OA在平面α內(nèi)的射影,直線OC在平面α內(nèi),且∠AOB=∠BOC=45°,則∠AOC的大小為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“m<1”是“函數(shù)f(x)=x2-x+
1
4
m存在零點(diǎn)”的(  )
A、充分不必要條件
B、充要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于a>0,a≠1,下列結(jié)論正確的是( 。
A、loga
M
N
=
logaM
logaN
B、nlogaM=logaMn
C、loga(MN)=logaM•logaN
D、logaM+logaN=loga(M+N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A、250-1
B、251-1
C、
2
3
(425-1)
D、
2
3
(426-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)是奇函數(shù),又是以2為周期的周期函數(shù),那么f(1)+f(2)+f(3)+…+f(2007)的值等于(  )
A、-1B、0C、1D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知斜率為-
2
2
的直線與橢圓
x2
a2
+
y2
b2
=1,(a>b>0)交于兩點(diǎn),若這兩點(diǎn)在x軸的射影恰好是橢圓的焦點(diǎn),則e為( 。
A、
1
3
B、
1
2
C、
3
3
D、
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案