【題目】已知過點M(﹣3,0)的直線l被圓x2+(y+2)2=25所截得的弦長為8,那么直線l的方程為

【答案】x=﹣3或5x﹣12y+15=0
【解析】解:設(shè)直線方程為y=k(x+3)或x=﹣3,

∵圓心坐標(biāo)為(0,﹣2),圓的半徑為5,

∴圓心到直線的距離d= =3,

=3,

∴k= ,∴直線方程為y= (x+3),即5x﹣12y+15=0;

直線x=﹣3,圓心到直線的距離d=|﹣3|=3,符合題意,

所以答案是:x=﹣3或5x﹣12y+15=0.

【考點精析】解答此題的關(guān)鍵在于理解直線與圓的三種位置關(guān)系的相關(guān)知識,掌握直線與圓有三種位置關(guān)系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=| ﹣ax|,若對任意的正實數(shù)a,總存在x0∈[1,4],使得f(x0)≥m,則實數(shù)m的取值范圍為(
A.(﹣∞,0]
B.(﹣∞,1]
C.(﹣∞,2]
D.(﹣∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=2,a2=6,且數(shù)列{an1﹣an}{n∈N*}是公差為2的等差數(shù)列.
(1)求{an}的通項公式;
(2)記數(shù)列{ }的前n項和為Sn , 求滿足不等式Sn 的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,AB=2,點E是BC的中點.

(1)求線段DE的長;
(2)求直線A1E與平面ADD1A1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角△ABC的三內(nèi)角A,B,C所對的邊分別是a,b,c,且2csinB= b.
(1)求角C的大小;
(2)若邊c=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方體ABCD﹣A1B1C1D1 , 下列向量的數(shù)量積一定不為0的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點,若存在求出直線的方程l,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,當(dāng)x>0時,f(x)=log2 +a).
(1)若函數(shù)f(x)過點(1,1),求此時函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(x)+2log2x只有一個零點,求實數(shù)a的范圍;
(3)設(shè)a>0,若對任意實數(shù)t∈[ ,1],函數(shù)f(x)在[t,t+1]上的最大值與最小值的差不大于1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(m,﹣1), =(
(1)若m=﹣ ,求 的夾角θ;
(2)設(shè) . ①求實數(shù)m的值;
②若存在非零實數(shù)k,t,使得[ +(t2﹣3) ]⊥(﹣k +t ),求 的最小值.

查看答案和解析>>

同步練習(xí)冊答案