【題目】設(shè)函數(shù)y=f (x),對(duì)任意實(shí)數(shù)x,y都有f (x+y)=f (x)+f (y)+2xy.
(1)求f (0)的值;
(2)若f (1)=1,求f (2),f (3),f (4)的值;
(3)在(2)的條件下,猜想f (n)(n∈N*)的表達(dá)式并用數(shù)學(xué)歸納法證明.

【答案】
(1)解:令x=y=0,得f(0+0)=f(0)+f(0)+2×0×0,得f(0)=0.
(2)解:由f(1)=1,得f(2)=f(1+1)=f(1)+f(1)+2×1×1=4.

f(3)=f(2+1)=f(2)+f(1)+2×2×1=9.f(4)=f(3+1)=f(3)+f(1)+2×3×1=16


(3)解:由(2)可猜想f(n)=n2,

用數(shù)學(xué)歸納法證明:

(i)當(dāng)n=1時(shí),f(1)=12=1顯然成立.

(ii)假設(shè)當(dāng)n=k時(shí),命題成立,即f(k)=k2

則當(dāng)n=k+1時(shí),f(k+1)=f(k)+f(1)+2×k×1=k2+1+2k=(k+1)2

故當(dāng)n=k+1時(shí)命題也成立,

由(i),(ii)可得,對(duì)一切n∈N*都有f(n)=n2成立


【解析】(1)利用特殊值法判斷即可;(2)根據(jù)條件,逐步代入求解;(3)猜想結(jié)論,根據(jù)數(shù)學(xué)歸納法的證明步驟證明.
【考點(diǎn)精析】掌握數(shù)學(xué)歸納法的定義是解答本題的根本,需要知道數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={﹣1,1},集合B={x|ax=1,a∈R},則使得BA的a的所有取值構(gòu)成的集合是(
A.{0,1}
B.{0,﹣1}
C.{1,﹣1}
D.{﹣1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若多項(xiàng)式x10=a0+a1(x+1)+…a9(x+1)9+a10(x+1)10 , 則a1+a3+a5+a7+a9= . (用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)α,β為兩個(gè)不同的平面,l為直線,則下列結(jié)論正確的是(
A.l∥α,α⊥βl⊥α
B.l⊥α,α⊥βl∥α
C.l∥α,α∥βl∥β
D.l⊥α,α∥βl⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合設(shè)U={x|﹣3<x<3,x∈Z},A={1,2},B={﹣2,﹣1,2},則A∪UB=(
A.{1}
B.{1,2}
C.{2}
D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若α是第三象限角,則180°﹣α是第象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+2ax+4(0<a<3),若x1<x2 , x1+x2=0,則(
A.f(x1)<f(x2
B.f(x1)>f(x2
C.f(x1)=f(x2
D.f(x1)與f(x2)的大小不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合U={1,2,3,4},集合A={x∈N|x2﹣5x+4<0},則UA等于(
A.{1,2}
B.{1,4}
C.{2,4}
D.{1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+x3 , x1 , x2 , x3∈R,x1+x2>0,x2+x3>0,x3+x1>0,那么f(x1)+f(x2)+f(x3)的值(
A.一定大于0
B.等于0
C.一定小于0
D.正負(fù)都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案